Advertisement

Neurotherapeutics

, Volume 16, Issue 3, pp 543–553 | Cite as

Molecular Signatures of the Aging Brain: Finding the Links Between Genes and Phenotypes

  • Giuseppe LupoEmail author
  • Silvana Gaetani
  • Emanuele Cacci
  • Stefano Biagioni
  • Rodolfo Negri
Review

Abstract

Aging is associated with cognitive decline and increased vulnerability to neurodegenerative diseases. The progressive extension of the average human lifespan is bound to lead to a corresponding increase in the fraction of cognitively impaired elderly individuals among the human population, with an enormous societal and economic burden. At the cellular and tissue levels, cognitive decline is linked to a reduction in specific neuronal subpopulations, a widespread decrease in synaptic plasticity and an increase in neuroinflammation due to an enhanced activation of astrocytes and microglia, but the molecular mechanisms underlying these functional changes during normal aging and in neuropathological conditions remain poorly understood. In this review, we summarize very recent and outstanding progress in elucidating the molecular changes associated with cognitive decline through the genome-wide profiling of aging brain cells at different molecular levels (genomic, epigenomic, transcriptomic, proteomic). We discuss how the correlation of different molecular and phenotypic traits driven by mathematical and computational analyses of large datasets has led to the prediction of key molecular nodes of neurodegenerative pathways, and provide a few examples of candidate regulators of cognitive decline identified with these approaches. Furthermore, we highlight the dysregulation of the synaptic transcriptome in neuronal cells and of the inflammatory transcriptome in glial cells as some of the key events during normal and neuropathological human brain aging.

Key Words

Brain Aging Cognitive decline Gene expression DNA methylation Histone acetylation 

Notes

Supplementary material

13311_2019_743_MOESM1_ESM.pdf (432 kb)
ESM 1 (PDF 431 kb)

References

  1. 1.
    Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419CrossRefGoogle Scholar
  2. 2.
    Morrison JH, Hof PR (2007) Life and death of neurons in the aging cerebral cortex. Int Rev Neurobiol 81:41–57.  https://doi.org/10.1016/S0074-7742(06)81004-4 CrossRefGoogle Scholar
  3. 3.
    Soreq L, UK Brain Expression Consortium, North American Brain Expression Consortium, et al (2017) Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Rep 18:557–570.  https://doi.org/10.1016/j.celrep.2016.12.011 CrossRefGoogle Scholar
  4. 4.
    Kennard JA, Brown KL, Woodruff-Pak DS (2013) Aging in the cerebellum and hippocampus and associated behaviors over the adult life span of CB6F1 mice. Neuroscience 247:335–350.  https://doi.org/10.1016/j.neuroscience.2013.06.002 CrossRefGoogle Scholar
  5. 5.
    Calì C, Wawrzyniak M, Becker C, et al (2018) The effects of aging on neuropil structure in mouse somatosensory cortex-A 3D electron microscopy analysis of layer 1. PloS One 13:e0198131.  https://doi.org/10.1371/journal.pone.0198131 CrossRefGoogle Scholar
  6. 6.
    Eavri R, Shepherd J, Welsh CA, et al (2018) Interneuron Simplification and Loss of Structural Plasticity As Markers of Aging-Related Functional Decline. J Neurosci Off J Soc Neurosci 38:8421–8432.  https://doi.org/10.1523/JNEUROSCI.0808-18.2018 CrossRefGoogle Scholar
  7. 7.
    Fattoretti P, Malatesta M, Cisterna B, et al (2018) Modulatory Effect of Aerobic Physical Activity on Synaptic Ultrastructure in the Old Mouse Hippocampus. Front Aging Neurosci 10:141.  https://doi.org/10.3389/fnagi.2018.00141
  8. 8.
    Mostany R, Anstey JE, Crump KL, et al (2013) Altered synaptic dynamics during normal brain aging. J Neurosci Off J Soc Neurosci 33:4094–4104.  https://doi.org/10.1523/JNEUROSCI.4825-12.2013 CrossRefGoogle Scholar
  9. 9.
    Di Benedetto S, Müller L, Wenger E, et al (2017) Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 75:114–128.  https://doi.org/10.1016/j.neubiorev.2017.01.044 CrossRefGoogle Scholar
  10. 10.
    Liang KJ, Carlson ES (2019) Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem.  https://doi.org/10.1016/j.nlm.2019.01.004
  11. 11.
    Lupo G, Nisi PS, Esteve P, et al (2018) Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline. Aging Cell 17:e12745.  https://doi.org/10.1111/acel.12745 CrossRefGoogle Scholar
  12. 12.
    Lupo G, Gioia R, Nisi PS, et al (2019) Molecular Mechanisms of Neurogenic Aging in the Adult Mouse Subventricular Zone. J Exp Neurosci 13:1179069519829040.  https://doi.org/10.1177/1179069519829040 CrossRefGoogle Scholar
  13. 13.
    Shi Z, Geng Y, Liu J, et al (2018) Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein Cell 9:351–364.  https://doi.org/10.1007/s13238-017-0450-2 Google Scholar
  14. 14.
    Lodato MA, Rodin RE, Bohrson CL, et al (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555–559.  https://doi.org/10.1126/science.aao4426 CrossRefGoogle Scholar
  15. 15.
    Mostafavi S, Gaiteri C, Sullivan SE, et al (2018) A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat Neurosci 21:811–819.  https://doi.org/10.1038/s41593-018-0154-9 CrossRefGoogle Scholar
  16. 16.
    Tasaki S, Gaiteri C, Mostafavi S, et al (2018) Multi-omic Directed Networks Describe Features of Gene Regulation in Aged Brains and Expand the Set of Genes Driving Cognitive Decline. Front Genet 9:294.  https://doi.org/10.3389/fgene.2018.00294 CrossRefGoogle Scholar
  17. 17.
    Tasaki S, Gaiteri C, Mostafavi S, et al (2018) The Molecular and Neuropathological Consequences of Genetic Risk for Alzheimer’s Dementia. Front Neurosci 12:699.  https://doi.org/10.3389/fnins.2018.00699 CrossRefGoogle Scholar
  18. 18.
    Klein H-U, McCabe C, Gjoneska E, et al (2019) Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat Neurosci 22:37–46.  https://doi.org/10.1038/s41593-018-0291-1 CrossRefGoogle Scholar
  19. 19.
    De Jager PL, Srivastava G, Lunnon K, et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163.  https://doi.org/10.1038/nn.3786 CrossRefGoogle Scholar
  20. 20.
    Yu L, Petyuk VA, Gaiteri C, et al (2018) Targeted brain proteomics uncover multiple pathways to Alzheimer’s dementia. Ann Neurol 84:78–88.  https://doi.org/10.1002/ana.25266 CrossRefGoogle Scholar
  21. 21.
    Nakayama H, Bruneau S, Kochupurakkal N, et al (2015) Regulation of mTOR Signaling by Semaphorin 3F-Neuropilin 2 Interactions In Vitro and In Vivo. Sci Rep 5:11789.  https://doi.org/10.1038/srep11789 CrossRefGoogle Scholar
  22. 22.
    Petyuk VA, Chang R, Ramirez-Restrepo M, et al (2018) The human brainome: network analysis identifies HSPA2 as a novel Alzheimer’s disease target. Brain J Neurol 141:2721–2739.  https://doi.org/10.1093/brain/awy215 Google Scholar
  23. 23.
    Lu T, Aron L, Zullo J, et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454.  https://doi.org/10.1038/nature13163 CrossRefGoogle Scholar
  24. 24.
    Nativio R, Donahue G, Berson A, et al (2018) Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci 21:497–505.  https://doi.org/10.1038/s41593-018-0101-9 CrossRefGoogle Scholar
  25. 25.
    Cheng H, Xuan H, Green CD, et al (2018) Repression of human and mouse brain inflammaging transcriptome by broad gene-body histone hyperacetylation. Proc Natl Acad Sci U S A 115:7611–7616.  https://doi.org/10.1073/pnas.1800656115 CrossRefGoogle Scholar
  26. 26.
    Carucci N, Cacci E, Nisi PS, et al (2017) Transcriptional response of Hoxb genes to retinoid signalling is regionally restricted along the neural tube rostrocaudal axis. R Soc Open Sci 4:160913.  https://doi.org/10.1098/rsos.160913 CrossRefGoogle Scholar
  27. 27.
    French L, Ma T, Oh H, et al (2017) Age-Related Gene Expression in the Frontal Cortex Suggests Synaptic Function Changes in Specific Inhibitory Neuron Subtypes. Front Aging Neurosci 9:162.  https://doi.org/10.3389/fnagi.2017.00162
  28. 28.
    Berchtold NC, Coleman PD, Cribbs DH, et al (2013) Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol Aging 34:1653–1661.  https://doi.org/10.1016/j.neurobiolaging.2012.11.024 CrossRefGoogle Scholar
  29. 29.
    Berchtold NC, Sabbagh MN, Beach TG, et al (2014) Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol Aging 35:1961–1972.  https://doi.org/10.1016/j.neurobiolaging.2014.03.031 CrossRefGoogle Scholar
  30. 30.
    Marttinen M, Paananen J, Neme A, et al (2019) A multiomic approach to characterize the temporal sequence in Alzheimer’s disease-related pathology. Neurobiol Dis 124:454–468.  https://doi.org/10.1016/j.nbd.2018.12.009 CrossRefGoogle Scholar
  31. 31.
    Dönertaş HM, İzgi H, Kamacıoğlu A, et al (2017) Gene expression reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity. Sci Rep 7:5894.  https://doi.org/10.1038/s41598-017-05927-4 CrossRefGoogle Scholar
  32. 32.
    Colantuoni C, Lipska BK, Ye T, et al (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478:519–523.  https://doi.org/10.1038/nature10524 CrossRefGoogle Scholar
  33. 33.
    Gasparoni G, Bultmann S, Lutsik P, et al (2018) DNA methylation analysis on purified neurons and glia dissects age and Alzheimer’s disease-specific changes in the human cortex. Epigenetics Chromatin 11:41.  https://doi.org/10.1186/s13072-018-0211-3
  34. 34.
    Ianov L, Riva A, Kumar A, Foster TC (2017) DNA Methylation of Synaptic Genes in the Prefrontal Cortex Is Associated with Aging and Age-Related Cognitive Impairment. Front Aging Neurosci 9:249.  https://doi.org/10.3389/fnagi.2017.00249
  35. 35.
    Ianov L, Rani A, Beas BS, et al (2016) Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex. Front Aging Neurosci 8:113.  https://doi.org/10.3389/fnagi.2016.00113 CrossRefGoogle Scholar
  36. 36.
    Raj T, Li YI, Wong G, et al (2018) Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat Genet 50:1584–1592.  https://doi.org/10.1038/s41588-018-0238-1 CrossRefGoogle Scholar
  37. 37.
    Kumar A, Gibbs JR, Beilina A, et al (2013) Age-associated changes in gene expression in human brain and isolated neurons. Neurobiol Aging 34:1199–1209.  https://doi.org/10.1016/j.neurobiolaging.2012.10.021 CrossRefGoogle Scholar
  38. 38.
    Cacci E, Negri R, Biagioni S, Lupo G (2017) Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation. Curr Top Med Chem 17:794–807CrossRefGoogle Scholar
  39. 39.
    Zheng Y, Thomas PM, Kelleher NL (2013) Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat Commun 4:2203.  https://doi.org/10.1038/ncomms3203 CrossRefGoogle Scholar
  40. 40.
    Olah M, Patrick E, Villani A-C, et al (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9:539.  https://doi.org/10.1038/s41467-018-02926-5 CrossRefGoogle Scholar
  41. 41.
    Galatro TF, Holtman IR, Lerario AM, et al (2017) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171.  https://doi.org/10.1038/nn.4597 CrossRefGoogle Scholar
  42. 42.
    Felsky D, Roostaei T, Nho K, et al (2019) Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nat Commun 10:409.  https://doi.org/10.1038/s41467-018-08279-3 CrossRefGoogle Scholar
  43. 43.
    Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (2018) The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. Cell Rep 22:269–285.  https://doi.org/10.1016/j.celrep.2017.12.039 CrossRefGoogle Scholar
  44. 44.
    Grabert K, Michoel T, Karavolos MH, et al (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516.  https://doi.org/10.1038/nn.4222 CrossRefGoogle Scholar
  45. 45.
    Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433.  https://doi.org/10.1038/nrg3965 CrossRefGoogle Scholar
  46. 46.
    Inukai S, de Lencastre A, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PloS One 7:e40028.  https://doi.org/10.1371/journal.pone.0040028 CrossRefGoogle Scholar
  47. 47.
    Yin L, Sun Y, Wu J, et al (2015) Discovering novel microRNAs and age-related nonlinear changes in rat brains using deep sequencing. Neurobiol Aging 36:1037–1044.  https://doi.org/10.1016/j.neurobiolaging.2014.11.001 CrossRefGoogle Scholar
  48. 48.
    Knupp D, Miura P (2018) CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev 173:71–79.  https://doi.org/10.1016/j.mad.2018.05.001 CrossRefGoogle Scholar
  49. 49.
    Xing W, Gao W, Mao G, et al (2017) Long non-coding RNAs in aging organs and tissues. Clin Exp Pharmacol Physiol 44 Suppl 1:30–37.  https://doi.org/10.1111/1440-1681.12795 CrossRefGoogle Scholar
  50. 50.
    Lupo G, Bertacchi M, Carucci N, et al (2014) From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci CMLS 71:2917–2930.  https://doi.org/10.1007/s00018-014-1596-1 CrossRefGoogle Scholar
  51. 51.
    Mathys H, Davila-Velderrain J, Peng Z, et al (2019) Single-cell transcriptomic analysis of Alzheimer's disease. Nature.  https://doi.org/10.1038/s41586-0191195-2

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  1. 1.Department of ChemistrySapienza University of RomeRomeItaly
  2. 2.Department of Physiology and Farmacology “V. Erspamer”Sapienza University of RomeRomeItaly
  3. 3.Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly

Personalised recommendations