Advertisement

Prostaglandin A1 Inhibits the Cognitive Decline of APP/PS1 Transgenic Mice via PPARγ/ABCA1-dependent Cholesterol Efflux Mechanisms

  • Guo-Biao Xu
  • Liu-Qing Yang
  • Pei-Pei Guan
  • Zhan-You WangEmail author
  • Pu WangEmail author
Original Article

Abstract

Prostaglandins (PGs) are early and key contributors to chronic neurodegenerative diseases. As one important member of classical PGs, PGA1 has been reported to exert potential neuroprotective effects. However, the mechanisms remain unknown. To this end, we are prompted to investigate whether PGA1 is a useful neurological treatment for Alzheimer’s disease (AD) or not. Using high-throughput sequencing, we found that PGA1 potentially regulates cholesterol metabolism and lipid transport. Interestingly, we further found that short-term administration of PGA1 decreased the levels of the monomeric and oligomeric β-amyloid protein (oAβ) in a cholesterol-dependent manner. In detail, PGA1 activated the peroxisome proliferator-activated receptor-gamma (PPARγ) and ATP-binding cassette subfamily A member 1 (ABCA1) signalling pathways, promoting the efflux of cholesterol and decreasing the intracellular cholesterol levels. Through PPARγ/ABCA1/cholesterol-dependent pathway, PGA1 decreased the expression of presenilin enhancer protein 2 (PEN-2), which is responsible for the production of Aβ. More importantly, long-term administration of PGA1 remarkably decreased the formation of Aβ monomers, oligomers, and fibrils. The actions of PGA1 on the production and deposition of Aβ ultimately improved the cognitive decline of the amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.

Key Words

Prostaglandin A1 Alzheimer’s disease cholesterol ATP-binding cassette subfamily A member 1 presenilin enhancer protein 2 

Notes

Acknowledgments

This work was supported in part or in whole by the Natural Science Foundation of China (81870840, 31571064, 81771167, and 81500934) and the Fundamental Research Foundation of Northeastern University, China (N172008008 and N172004005).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing financial interests.

Supplementary material

13311_2018_704_MOESM1_ESM.docx (4.2 mb)
ESM 1 (DOCX 4323 kb)
13311_2018_704_MOESM2_ESM.xls (41 kb)
ESM 2 (XLS 41 kb)
13311_2018_704_MOESM3_ESM.xlsx (78 kb)
ESM 3 (XLSX 78 kb)
13311_2018_704_MOESM4_ESM.pdf (488 kb)
ESM 4 (PDF 487 kb)
13311_2018_704_MOESM5_ESM.pdf (487 kb)
ESM 5 (PDF 487 kb)

References

  1. 1.
    Smith WL, Marnett LJ, DeWitt DL. Prostaglandin and thromboxane biosynthesis. Pharmacol Therapeut 1991; 49: 153–179.CrossRefGoogle Scholar
  2. 2.
    Cudaback E, Jorstad NL, Yang Y, Montine TJ, Keene CD. Therapeutic implications of the prostaglandin pathway in Alzheimer’s disease. Biochem Pharmacol 2014; 88: 565–572.CrossRefGoogle Scholar
  3. 3.
    Bazan NG, Colangelo V, Lukiw WJ. Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostag Oth Lipid M 2002; 68-69: 197–210.CrossRefGoogle Scholar
  4. 4.
    Wang P, Guan P-P, Guo J-W et al. Prostaglandin I2 upregulates the expression of anterior pharynx-defective-1α and anterior pharynx-defective-1β in amyloid precursor protein/presenilin 1 transgenic mice. Aging Cell 2016; 15: 861–871.CrossRefGoogle Scholar
  5. 5.
    Johansson JU, Woodling NS, Wang Q et al. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models. J Clin Invest 2015; 125: 350–364.CrossRefGoogle Scholar
  6. 6.
    Liang X, Wu L, Hand T, Andreasson K. Prostaglandin D2 mediates neuronal protection via the DP1 receptor. J Neurochem 2005; 92: 477–486.CrossRefGoogle Scholar
  7. 7.
    Scher JU, Pillinger MH. 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 2005; 114: 100–109.CrossRefGoogle Scholar
  8. 8.
    Figueiredo-Pereira ME, Corwin C, Babich J. Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration. Ann NY Acad Sci 2016; 1363: 125–137.CrossRefGoogle Scholar
  9. 9.
    Zhang H-L, Huang ZH, Zhu Y et al. Neuroprotective effects of prostaglandin A1 in animal models of focal ischemia. Brain Res 2005; 1039: 203–206.CrossRefGoogle Scholar
  10. 10.
    Zhang H-L, Gu Z-L, Savitz SI et al. Neuroprotective effects of prostaglandin A1 in rat models of permanent focal cerebral ischemia are associated with nuclear factor-κB inhibition and peroxisome proliferator-activated receptor-γ up-regulation. J Neurosci Res 2008; 86: 1132–1141.CrossRefGoogle Scholar
  11. 11.
    Garzón B, Gayarre J, Gharbi S et al. A biotinylated analog of the anti-proliferative prostaglandin A1 allows assessment of PPAR-independent effects and identification of novel cellular targets for covalent modification. Chem Biol Interact 2010; 183: 212–221.CrossRefGoogle Scholar
  12. 12.
    Wang X, Qin ZH, Leng Y et al. Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells. J Neurochem 2002; 83: 1094–1102.CrossRefGoogle Scholar
  13. 13.
    Hirata Y, Furuta K, Suzuki M et al. Neuroprotective cyclopentenone prostaglandins up-regulate neurotrophic factors in C6 glioma cells. Brain Res 2012; 1482: 91–100.CrossRefGoogle Scholar
  14. 14.
    Qin Z-H, Wang Y, Chen R-W et al. Prostaglandin A1 protects striatal neurons against excitotoxic injury in rat striatum. J Pharmacol Exp Ther 2001; 297: 78–87.Google Scholar
  15. 15.
    Ittner LM, Götz J. Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 2010; 12: 67.CrossRefGoogle Scholar
  16. 16.
    Jack CR, Knopman DS, Jagust WJ et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12: 207–216.CrossRefGoogle Scholar
  17. 17.
    Nitsch RM, Hock C. Targeting β-amyloid pathology in Alzheimer’s disease with Aβ immunotherapy. Neurotherapeutics 2008; 5: 415–420.CrossRefGoogle Scholar
  18. 18.
    Refolo LM, Pappolla MA, Malester B et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 2000; 7: 321–331.CrossRefGoogle Scholar
  19. 19.
    Xiong H, Callaghan D, Jones A et al. Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production. Neurobiol Dis 2008; 29: 422–437.CrossRefGoogle Scholar
  20. 20.
    Fassbender K, Simons M, Bergmann C et al. Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci USA 2001; 98: 5856–5861.CrossRefGoogle Scholar
  21. 21.
    Di Paolo G, Kim T-W. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 2011; 12: 284–296.CrossRefGoogle Scholar
  22. 22.
    Puglielli L, Konopka G, Pack-Chung E et al. Acyl-coenzyme A:cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nat Cell Biol 2001; 3: 905–912.CrossRefGoogle Scholar
  23. 23.
    Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013; 9: 106–118.CrossRefGoogle Scholar
  24. 24.
    Huttunen HJ, Kovacs DM. ACAT as a drug target for Alzheimer’s disease. Neurodegener Dis 2008; 5: 212–214.CrossRefGoogle Scholar
  25. 25.
    Wahrle SE, Jiang H, Parsadanian M et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 2008; 118: 671–682.Google Scholar
  26. 26.
    Wahrle SE, Jiang H, Parsadanian M et al. Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 2005; 280: 43236–43242.CrossRefGoogle Scholar
  27. 27.
    Poirier J. Apolipoprotein E and cholesterol metabolism in the pathogenesis and treatment of Alzheimer’s disease. Trends Mol Med 2003; 9: 94–101.CrossRefGoogle Scholar
  28. 28.
    Awad AB, Toczek J, Fink CS. Phytosterols decrease prostaglandin release in cultured P388D1/MAB macrophages. Prostag Leukotr Ess 2004; 70: 511–520.CrossRefGoogle Scholar
  29. 29.
    Moore KJ, El Khoury J, Medeiros LA et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J Biol Chem 2002; 277: 47373–47379.CrossRefGoogle Scholar
  30. 30.
    Rubic T, Trottmann M, Lorenz RL. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin. Biochem Pharmacol 2004; 67: 411–419.CrossRefGoogle Scholar
  31. 31.
    Wollmer MA, Streffer JR, Lütjohann D et al. ABCA1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer’s disease. Neurobiol Aging 2003; 24: 421–426.CrossRefGoogle Scholar
  32. 32.
    Yu X, Guan P-P, Guo J-W et al. By suppressing the expression of anterior pharynx-defective-1α and -1β and inhibiting the aggregation of β-amyloid protein, magnesium ions inhibit the cognitive decline of amyloid precursor protein/presenilin 1 transgenic mice. FASEB J 2015; 29: 5044–5058.CrossRefGoogle Scholar
  33. 33.
    Guo JW, Guan PP, Ding WY et al. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer’s disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 2017; 145: 106–127.CrossRefGoogle Scholar
  34. 34.
    Morales-Corraliza J, Schmidt SD, Mazzella MJ et al. Immunization targeting a minor plaque constituent clears β-amyloid and rescues behavioral deficits in an Alzheimer’s disease mouse model. Neurobiol Aging 2013; 34: 137–145.CrossRefGoogle Scholar
  35. 35.
    Liu L, Herukka S-K, Minkeviciene R, van Groen T, Tanila H. Longitudinal observation on CSF Aβ42 levels in young to middle-aged amyloid precursor protein/presenilin-1 doubly transgenic mice. Neurobiol Dis 2004; 17: 516–523.CrossRefGoogle Scholar
  36. 36.
    Piermartiri TCB, Figueiredo CP, Rial D et al. Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-β1-40 administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 2010; 226: 274–284.CrossRefGoogle Scholar
  37. 37.
    Halfmann R, Lindquist S. Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis. J Vis Exp 2008; 17:  https://doi.org/10.3791/3838.
  38. 38.
    Manuela D’ Iaz-Cazorla, Dolores Perez-Sala, Lamas S. Dual effect of nitric oxide donors on cyclooxygenase-2 expression in human mesangial cells. J Am Soc Nephrol 1999; 10: 943–952.Google Scholar
  39. 39.
    Diepenbruck M, Tiede S, Saxena M et al. miR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis. Nat Commun 2017; 8: 1168.CrossRefGoogle Scholar
  40. 40.
    Li X, Zhang S, Blander G et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007; 28: 91–106.CrossRefGoogle Scholar
  41. 41.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356.CrossRefGoogle Scholar
  42. 42.
    Xu X-H, Zhang H-L, Han R, Gu Z-L, Qin Z-H. Enhancement of neuroprotection and heat shock protein induction by combined prostaglandin A1 and lithium in rodent models of focal ischemia. Brain Res 2006; 1102: 154–162.CrossRefGoogle Scholar
  43. 43.
    Wolozin B. Cholesterol and the biology of Alzheimer’s disease. Neuron 2004; 41: 7–10.CrossRefGoogle Scholar
  44. 44.
    Hanson AJ, Prasad JE, Nahreini P et al. Overexpression of amyloid precursor protein is associated with degeneration, decreased viability, and increased damage caused by neurotoxins (prostaglandins A1 and E2, hydrogen peroxide, and nitric oxide) in differentiated neuroblastoma cells. J Neurosci Res 2003; 74: 148–159.CrossRefGoogle Scholar
  45. 45.
    Hirsch-Reinshagen V, Zhou S, Burgess BL et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 2004; 279: 41197–41207.CrossRefGoogle Scholar
  46. 46.
    Kim WS, Rahmanto AS, Kamili A et al. Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein E discs and suppression of amyloid-β peptide generation. J Biol Chem 2007; 282: 2851–2861.CrossRefGoogle Scholar
  47. 47.
    Yu X, Guan PP, Zhu D et al. Magnesium ions inhibit the expression of tumor necrosis factor alpha and the activity of gamma-secretase in a beta-amyloid protein-dependent mechanism in APP/PS1 transgenic mice. Front Mol Neurosci 2018; 11: 172.CrossRefGoogle Scholar
  48. 48.
    Giaginis C, Tsourouflis G, Theocharis S. Peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands: novel pharmacological agents in the treatment of ischemia reperfusion injury. Curr Mol Med 2008; 8: 562–579.CrossRefGoogle Scholar
  49. 49.
    Kulkarni AA, Thatcher TH, Olsen KC et al. PPAR-gamma ligands repress TGFbeta-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PLoS One 2011; 6: e15909.CrossRefGoogle Scholar
  50. 50.
    Zhu Y, Gu ZL, Liang ZQ, Zhang HL, Qin ZH. Prostaglandin A1 inhibits increases in intracellular calcium concentration, TXA(2) production and platelet activation. Acta Pharmacol Sin 2006; 27: 549–554.CrossRefGoogle Scholar
  51. 51.
    Kim HY, Kim JR, Kim HS. Upregulation of lipopolysaccharide-induced interleukin-10 by prostaglandin A1 in mouse peritoneal macrophages. J Microbiol Biotechnol 2008; 18: 1170–1178.Google Scholar
  52. 52.
    De Strooper B. Aph-1, pen-2, and nicastrin with presenilin generate an active γ-secretase complex. Neuron 2003; 38: 9–12.CrossRefGoogle Scholar
  53. 53.
    Crystal AS, Morais VA, Fortna RR et al. Presenilin modulates pen-2 levels posttranslationally by protecting it from proteasomal degradation. Biochemistry 2004; 43: 3555–3563.CrossRefGoogle Scholar
  54. 54.
    Nam SH, Seo SJ, Goo JS et al. Pen-2 overexpression induces Abeta-42 production, memory defect, motor activity enhancement and feeding behavior dysfunction in NSE/Pen-2 transgenic mice. Int J Mol Med 2011; 28: 961–971.Google Scholar
  55. 55.
    Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R. Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediat Inflamm 2013; 2013: 549627.CrossRefGoogle Scholar
  56. 56.
    Chawla A, Barak Y, Nagy L et al. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001; 7: 48–52.CrossRefGoogle Scholar
  57. 57.
    Bernardo A, Levi G, Minghetti L. Role of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and its natural ligand 15-deoxy-Δ12,14-prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci 2000; 12: 2215–2223.CrossRefGoogle Scholar
  58. 58.
    Elia G, Polla B, Rossi A, Santoro MG. Induction of ferritin and heat shock proteins by prostaglandin A1 in human monocytes. Eur J Biochem 1999; 264: 736–745.CrossRefGoogle Scholar
  59. 59.
    Shiraki T, Kamiya N, Shiki S et al. Alpha,beta-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor gamma. J Biol Chem 2005; 280: 14145–14153.CrossRefGoogle Scholar
  60. 60.
    Landreth G, Jiang Q, Mandrekar S, Heneka M. PPARγ agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 2008; 5: 481–489.CrossRefGoogle Scholar
  61. 61.
    Heneka MT, Sastre M, Dumitrescu-Ozimek L et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 2005; 128: 1442–1453.CrossRefGoogle Scholar
  62. 62.
    Koldamova R, Fitz NF, Lefterov I. ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis 2014; 72: 13–21.CrossRefGoogle Scholar
  63. 63.
    Camacho IE, Serneels L, Spittaels K et al. Peroxisome proliferator-activated receptor γ induces a clearance mechanism for the amyloid-β peptide. J Neurosci 2004; 24: 10908–10917.CrossRefGoogle Scholar
  64. 64.
    Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 2012; 32: 10117–10128.CrossRefGoogle Scholar
  65. 65.
    Gibson WW, Ling L, E. MW, P. EG. Cholesterol as a causative factor in Alzheimer’s disease: a debatable hypothesis. J Neurochem 2014; 129: 559–572.CrossRefGoogle Scholar
  66. 66.
    Shie F-S, Jin L-W, Cook DG, Leverenz JB, LeBoeuf RC. Diet-induced hypercholesterolemia enhances brain Aβ accumulation in transgenic mice. Neuroreport 2002; 13: 455–459.CrossRefGoogle Scholar
  67. 67.
    Thirumangalakudi L, Prakasam A, Zhang R et al. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 2008; 106: 475–485.CrossRefGoogle Scholar
  68. 68.
    Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets—protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol med 2016; 89: 5–21.Google Scholar
  69. 69.
    Colin J, Gregory-Pauron L, Lanhers M-C et al. Membrane raft domains and remodeling in aging brain. Biochimie 2016; 130: 178–187.CrossRefGoogle Scholar
  70. 70.
    Barrett PJ, Song Y, Van Horn WD et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 2012; 336: 1168.CrossRefGoogle Scholar
  71. 71.
    Yang X, Sun GY, Eckert GP, Lee JC-M. Cellular membrane fluidity in amyloid precursor protein processing. Mol Neurobiol 2014; 50: 119–129.CrossRefGoogle Scholar
  72. 72.
    Crestini A, Napolitano M, Piscopo P, Confaloni A, Bravo E. Changes in cholesterol metabolism are associated with PS1 and PS2 gene regulation in SK-N-BE. J Mol Neurosci 2006; 30: 311–322.CrossRefGoogle Scholar
  73. 73.
    Kimberly WT, LaVoie MJ, Ostaszewski BL et al. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc Natl Acad Sci USA 2003; 100: 6382–6387.CrossRefGoogle Scholar
  74. 74.
    Simons M, Keller P, De Strooper B et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 1998; 95: 6460–6464.CrossRefGoogle Scholar
  75. 75.
    Schneider A, Schulz-Schaeffer W, Hartmann T, Schulz JB, Simons M. Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 2006; 23: 573–577.CrossRefGoogle Scholar
  76. 76.
    Simons M, Keller P, Dichgans J, Schulz JB. Cholesterol and Alzheimer’s disease: is there a link? Neurology 2001; 57: 1089–1093.CrossRefGoogle Scholar
  77. 77.
    van Vliet P. Cholesterol and late-life cognitive decline. J Alzheimers Dis 2012; 30 Suppl 2: S147–162.CrossRefGoogle Scholar
  78. 78.
    Kurata T, Miyazaki K, Kozuki M et al. Atorvastatin and pitavastatin improve cognitive function and reduce senile plaque and phosphorylated tau in aged APP mice. Brain Res 2011; 1371: 161–170.CrossRefGoogle Scholar
  79. 79.
    Baghdasarian SB, Jneid H, Hoogwerf BJ. Association of dyslipidemia and effects of statins on nonmacrovascular diseases. Clin Ther 2004; 26: 337–351.CrossRefGoogle Scholar
  80. 80.
    Ankel H, Turriziani O, Antonelli G. Prostaglandin A inhibits replication of human immunodeficiency virus during acute infection. J Gen Virol 1991; 72: 2797–2800.CrossRefGoogle Scholar
  81. 81.
    Chawla A, Boisvert WA, Lee C-H et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161–171.CrossRefGoogle Scholar
  82. 82.
    Tachikawa M, Watanabe M, Hori S et al. Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J Neurochem 2005; 95: 294–304.CrossRefGoogle Scholar
  83. 83.
    Fukumoto H, Deng A, Irizarry MC, Fitzgerald ML, Rebeck GW. Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J Biol Chem 2002; 277: 48508–48513.CrossRefGoogle Scholar
  84. 84.
    Yassine HN, Feng Q, Chiang J et al. ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer’s disease. J Am Heart Assoc 2016; 5: e002886.CrossRefGoogle Scholar
  85. 85.
    Sundar PD, Feingold E, Minster RL, DeKosky ST, Kamboh MI. Gender-specific association of ATP-binding cassette transporter 1 (ABCA1) polymorphisms with the risk of late-onset Alzheimer’s disease. Neurobiol Aging 2007; 28: 856–862.CrossRefGoogle Scholar
  86. 86.
    Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem Neurosci 2012; 3: 820–831.CrossRefGoogle Scholar
  87. 87.
    Loane DJ, Washington PM, Vardanian L et al. Modulation of ABCA1 by an LXR agonist reduces beta-amyloid levels and improves outcome after traumatic brain injury. J Neurotrauma 2011; 28: 225–236.CrossRefGoogle Scholar
  88. 88.
    Segatto M, Leboffe L, Trapani L, Pallottini V. Cholesterol homeostasis failure in the brain: implications for synaptic dysfunction and cognitive decline. Curr Med Chem 2014; 21: 2788–2802.CrossRefGoogle Scholar
  89. 89.
    Ruan XZ, Moorhead JF, Fernando R et al. PPAR agonists protect mesangial cells from interleukin 1β-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J Am Soc Nephrol 2003; 14: 593–600.CrossRefGoogle Scholar
  90. 90.
    Chinetti G, Lestavel S, Bocher V et al. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53–58.CrossRefGoogle Scholar
  91. 91.
    Rebeck GW. Cholesterol efflux as a critical component of Alzheimer’s disease pathogenesis. J Mol Neurosci 2004; 23: 219–224.CrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  1. 1.College of Life and Health SciencesNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations