Abstract
For more than 70 years, the promise of noninvasive neuromodulation using focused ultrasound has been growing while diagnostic ultrasound established itself as a foundation of clinical imaging. Significant technical challenges have been overcome to allow transcranial focused ultrasound to deliver spatially restricted energy into the nervous system at a wide range of intensities. High-intensity focused ultrasound produces reliable permanent lesions within the brain, and low-intensity focused ultrasound has been reported to both excite and inhibit neural activity reversibly. Despite intense interest in this promising new platform for noninvasive, highly focused neuromodulation, the underlying mechanism remains elusive, though recent studies provide further insight. Despite the barriers, the potential of focused ultrasound to deliver a range of permanent and reversible neuromodulation with seamless translation from bench to the bedside warrants unparalleled attention and scientific investment. Focused ultrasound boasts a number of key features such as multimodal compatibility, submillimeter steerable focusing, multifocal, high temporal resolution, coregistration, and the ability to monitor delivered therapy and temperatures in real time. Despite the technical complexity, the future of noninvasive focused ultrasound for neuromodulation as a neuroscience and clinical platform remains bright.
Key Words
Focused ultrasound LIFU HIFU neuromodulationNotes
Required Author Forms
Disclosure forms provided by the authors are available with the online version of this article.
Supplementary material
References
- 1.O’Brien WD Jr. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol. 2007;93:212–255.Google Scholar
- 2.Chan V, Perlas A. Basics of Ultrasound Imaging. In: Narouze SN, editor. Atlas of Ultrasound-Guided Procedures in Interventional Pain Management. New York, NY: Springer New York; 2011. p. 13–19.Google Scholar
- 3.Pinton G, Aubry J-F, Bossy E, et al. Attenuation, scattering, and absorption of ultrasound in the skull bone. Med. Phys. 2012;39:299–307.Google Scholar
- 4.Harary M, Segar DJ, Huang KT, et al. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg. Focus. 2018;44:E2.Google Scholar
- 5.Duck FA. Nonlinear acoustics in diagnostic ultrasound. Ultrasound Med. Biol. 2002;28:1–18.Google Scholar
- 6.Liu D, Casper A, Haritonova A, et al. Adaptive lesion formation using dual mode ultrasound array system. AIP Conf. Proc. 2017;1821:060003.Google Scholar
- 7.Newman PG, Rozycki GS. The history of ultrasound. Surg. Clin. North Am. 1998;78:179–195.Google Scholar
- 8.Strowitzki M, Moringlane JR, Steudel W. Ultrasound-based navigation during intracranial burr hole procedures: experience in a series of 100 cases. Surg. Neurol. 2000;54:134–144.Google Scholar
- 9.Meyer RA. History of ultrasound in cardiology. J. Ultrasound Med. 2004;23:1–11.Google Scholar
- 10.Sun XL, Yan JP, Li YF, et al. Multi-frequency ultrasound transducers for medical applications: a survey. International Journal of Intelligent Robotics and Applications [Internet]. 2018. https://doi.org/10.1007/s41315-018-0057-7.
- 11.Shankar H, Pagel PS. Potential Adverse Ultrasound-related Biological EffectsA Critical Review. Anesthesiology. 2011;115:1109–1124.Google Scholar
- 12.Naor O, Krupa S, Shoham S. Ultrasonic neuromodulation. J. Neural Eng. 2016;13:031003.Google Scholar
- 13.Dalecki D. Mechanical bioeffects of ultrasound. Annu. Rev. Biomed. Eng. 2004;6:229–248.Google Scholar
- 14.Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. U. S. A. 2011;108:3258–3263.Google Scholar
- 15.Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 2010;36:1379–1394.Google Scholar
- 16.Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects. Phys. Ther. 2001;81:1351–1358.Google Scholar
- 17.Rossmanna C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit. Rev. Biomed. Eng. 2014;42:467–492.Google Scholar
- 18.Wojcik G, Mould J, Abboud N, et al. Nonlinear modeling of therapeutic ultrasound. 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium. ieeexplore.ieee.org; 1995. p. 1617–1622 vol.2.
- 19.Pinton G, Pernot M, Bossy E, et al. Mechanisms of attenuation and heating dissipation of ultrasound in the skull bone: Comparison between simulation models and experiments. 2010 IEEE International Ultrasonics Symposium. 2010. p. 225–228.Google Scholar
- 20.Seip R, Ebbini ES. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE Trans. Biomed. Eng. 1995;42:828–839.Google Scholar
- 21.Krishna V, Sammartino F, Rezai A. A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment. JAMA Neurol. 2018;75:246–254.Google Scholar
- 22.Smith NB, Webb AG, Ellis DS, et al. Experimental verification of theoretical in vivo ultrasound heating using cobalt detected magnetic resonance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1995;42:489–491.Google Scholar
- 23.Draper DO, Castel JC, Castel D. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. J. Orthop. Sports Phys. Ther. 1995;22:142–150.Google Scholar
- 24.Ng A, Swanevelder J. Resolution in ultrasound imaging. Contin Educ Anaesth Crit Care Pain. 2011;11:186–192.Google Scholar
- 25.Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948;1:93–122.Google Scholar
- 26.Evans KD, Weiss B, Knopp M. High-Intensity Focused Ultrasound (HIFU) for Specific Therapeutic Treatments: A Literature Review. J. Diagn. Med. Sonogr. 2007;23:319–327.Google Scholar
- 27.Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 2013;369:640–648.Google Scholar
- 28.Ikeda T, Yoshizawa S, Koizumi N, et al. Focused Ultrasound and Lithotripsy. Adv. Exp. Med. Biol. 2016;880:113–129.Google Scholar
- 29.Rinaldi PC, Jones JP, Reines F, et al. Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation. Brain Res. 1991;558:36–42.Google Scholar
- 30.Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66:681–694.Google Scholar
- 31.Wahab RA, Choi M, Liu Y, et al. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model: Bioeffects of pulsed ultrasound on nerves. Med. Phys. 2012;39:4274–4283.Google Scholar
- 32.Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed. Eng. Lett. 2017;7:135–142.Google Scholar
- 33.Barnett SB, Ter Haar GR, Ziskin MC, et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med. Biol. 2000;26:355–366.Google Scholar
- 34.Nelson TR, Fowlkes JB, Abramowicz JS, et al. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 2009;28:139–150.Google Scholar
- 35.Dickson JA, Calderwood SK. Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann. N. Y. Acad. Sci. 1980;335:180–205.Google Scholar
- 36.Kyriakou Z, Corral-Baques MI, Amat A, et al. HIFU-induced cavitation and heating in ex vivo porcine subcutaneous fat. Ultrasound Med. Biol. 2011;37:568–579.Google Scholar
- 37.Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol. 2018;50:222–231.Google Scholar
- 38.Neppiras EA. Acoustic cavitation series: part one: Acoustic cavitation: an introduction. Ultrasonics. 1984;22:25–28.Google Scholar
- 39.Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. Ultrasound in Medicine and Biology. 2017;43:1085–1104.Google Scholar
- 40.Church CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med. Biol. 2002;28:1349–1364.Google Scholar
- 41.Holland CK, Deng CX, Apfel RE, et al. Direct evidence of cavitation in vivo from diagnostic ultrasound. Ultrasound Med. Biol. 1996;22:917–925.Google Scholar
- 42.Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006;7:41.Google Scholar
- 43.Bakay L, Ballantine HT Jr, Hueter TF, et al. Ultrasonically produced changes in the blood-brain barrier. AMA Arch. Neurol. Psychiatry. 1956;76:457–467.Google Scholar
- 44.Patrick JT, Nolting MN, Goss SA, et al. Ultrasound and the blood-brain barrier. Adv. Exp. Med. Biol. 1990;267:369–381.Google Scholar
- 45.Ballantine HT Jr, Bell E, Manlapaz J. Progress and problems in the neurological applications of focused ultrasound. J. Neurosurg. 1960;17:858–876.Google Scholar
- 46.Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220:640–646.Google Scholar
- 47.Yang F-Y, Lin Y-S, Kang K-H, et al. Reversible blood–brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J. Control. Release. 2011;150:111–116.Google Scholar
- 48.Airan RD, Meyer RA, Ellens NPK, et al. Noninvasive Targeted Transcranial Neuromodulation via Focused Ultrasound Gated Drug Release from Nanoemulsions. Nano Lett. 2017;17:652–659.Google Scholar
- 49.Downs ME, Buch A, Karakatsani ME, et al. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles. Sci. Rep. 2015;5:15076.Google Scholar
- 50.Wang S, Kugelman T, Buch A, et al. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics, Sci. Rep. 2017;7:39955.Google Scholar
- 51.Mead B, Kim N, Negron K, et al. Intersections of neuromodulation, focused ultrasound, and gene delivery with brain-penetrating nanoparticles. J. Acoust. Soc. Am. 2017;142:2669–2669.Google Scholar
- 52.Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 1996;99:2791–2798.Google Scholar
- 53.Tyler WJ, Tufail Y, Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 2008;3:e3511.Google Scholar
- 54.Kubanek J, Shi J, Marsh J, et al. Ultrasound modulates ion channel currents. Sci. Rep. 2016;6:24170.Google Scholar
- 55.Kubanek J, Shukla P, Das A, et al. Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. J. Neurosci. 2018;38:3081–3091.Google Scholar
- 56.Duck FA. The Meaning of Thermal Index (TI) and Mechanical Index (MI) Values. BMUS Bulletin. 1997;5:36–40.Google Scholar
- 57.Humphrey VF. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging. Ultrasonics. 2000;38:267–272.Google Scholar
- 58.Zemp RJ, Tavakkoli J, Cobbold RSC. Modeling of nonlinear ultrasound propagation in tissue from array transducers. J. Acoust. Soc. Am. 2003;113:139–152.Google Scholar
- 59.Kubanek J. Neuromodulation with transcranial focused ultrasound. Neurosurg. Focus. 2018;44:E14.Google Scholar
- 60.Hand JW, Shaw A, Sadhoo N, et al. A random phased array device for delivery of high intensity focused ultrasound. Phys. Med. Biol. 2009;54:5675–5693.Google Scholar
- 61.Techavipoo U, Worasawate D, Boonleelakul W, et al. Toward Optimal Computation of Ultrasound Image Reconstruction Using CPU and GPU. Sensors [Internet]. 2016;16. Available from: https://doi.org/10.3390/s16121986.
- 62.Ebbini ES, Yao H, Shrestha A. Dual-mode ultrasound phased arrays for image-guided surgery. Ultrason. Imaging. 2006;28:65–82.Google Scholar
- 63.Mueller JK, Ai L, Bansal P, et al. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J. Neural Eng. 2017;14:066012.Google Scholar
- 64.Magnin R, Rabusseau F, Salabartan F, et al. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J Ther Ultrasound. 2015;3:22.Google Scholar
- 65.Bystritsky A, Korb AS, Douglas PK, et al. A review of low-intensity focused ultrasound pulsation. Brain Stimul. 2011;4:125–136.Google Scholar
- 66.Lynn JG, Zwemer RL, Chick AJ, et al. A new method for the generation and use of focused ultrasound in experimental biology. J. Gen. Physiol. 1942;26:179–193.Google Scholar
- 67.Ye G, Smith PP, Noble JA. Model-based ultrasound temperature visualization during and following HIFU exposure. Ultrasound Med. Biol. 2010;36:234–249.Google Scholar
- 68.Gyöngy M, Coussios C-C. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans. Biomed. Eng. 2010;57:48–56.Google Scholar
- 69.Miller NR, Bamber JC, ter Haar GR. Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound Med. Biol. 2004;30:345–356.Google Scholar
- 70.Simon C, Vanbaren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998;45:1088–1099.Google Scholar
- 71.Yung JP, Shetty A, Elliott A, et al. Quantitative comparison of thermal dose models in normal canine brain. Med. Phys. 2010;37:5313–5321.Google Scholar
- 72.Takagi SF, Higashino S, Shibuya T, et al. The actions of ultrasound on the myelinated nerve, the spinal cord and the brain. Jpn. J. Physiol. 1960;10:183–193.Google Scholar
- 73.Tsui P-H, Wang S-H, Huang C-C. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics. 2005;43:560–565.Google Scholar
- 74.Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 2014;17:322–329.Google Scholar
- 75.Gulick DW, Li T, Kleim JA, et al. Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex. Ultrasound Med. Biol. 2017;43:2824–2833.Google Scholar
- 76.Daniels D, Sharabi S, Last D, et al. Focused Ultrasound-Induced Suppression of Auditory Evoked Potentials in Vivo. Ultrasound Med. Biol. 2018;44:1022–1030.Google Scholar
- 77.Min B-K, Bystritsky A, Jung K-I, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci. 2011;12:23.Google Scholar
- 78.Chu P-C, Liu H-L, Lai H-Y, et al. Neuromodulation accompanying focused ultrasound-induced blood-brain barrier opening. Sci. Rep. 2015;5:15477.Google Scholar
- 79.Kim H, Park MY, Lee SD, et al. Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. Neuroreport. 2015;26:211–215.Google Scholar
- 80.Dallapiazza RF, Timbie KF, Holmberg S, et al. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J. Neurosurg. 2017;1–10.Google Scholar
- 81.Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound. Science. 1958;127:83–84.Google Scholar
- 82.Rezayat E, Toostani IG. A Review on Brain Stimulation Using Low Intensity Focused Ultrasound. Basic Clin Neurosci. 2016;7:187–194.Google Scholar
- 83.Dinno MA, Dyson M, Young SR, et al. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys. Med. Biol. 1989;34:1543–1552.Google Scholar
- 84.Yoo S-S, Bystritsky A, Lee J-H, et al. Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011;56:1267–1275.Google Scholar
- 85.Kim H, Taghados SJ, Fischer K, et al. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound. Ultrasound Med. Biol. 2012;38:1568–1575.Google Scholar
- 86.Wright CJ, Rothwell J, Saffari N. Ultrasonic stimulation of peripheral nervous tissue: an investigation into mechanisms. J. Phys. Conf. Ser. 2015;581:012003.Google Scholar
- 87.Buzatu S. The temperature-induced changes in membrane potential. Riv. Biol. 2009;102:199–217.Google Scholar
- 88.Borrelli MJ, Bailey KI, Dunn F. Early ultrasonic effects upon mammalian CNS structures (chemical synapses). J. Acoust. Soc. Am. 1981;69:1514–1516.Google Scholar
- 89.Juan EJ, González R, Albors G, et al. Vagus Nerve Modulation Using Focused Pulsed Ultrasound: Potential Applications and Preliminary Observations in a Rat. Int. J. Imaging Syst. Technol. 2014;24:67–71.Google Scholar
- 90.Lele PP. Effects of focused ultrasonic radiation on peripheral nerve, with observations on local heating. Exp. Neurol. 1963;8:47–83.Google Scholar
- 91.Tyler WJ. The mechanobiology of brain function. Nat. Rev. Neurosci. 2012;13:867–878.Google Scholar
- 92.Ye J, Tang S, Meng L, et al. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Nano Lett. 2018;18:4148–4155.Google Scholar
- 93.Plaksin M, Shoham S, Kimmel E. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation. Phys. Rev. X. 2014;4:011004.Google Scholar
- 94.Sato T, Shapiro MG, Tsao DY. Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism. Neuron. 2018;98:1031–1041.e5.Google Scholar
- 95.Guo H, Hamilton M 2nd, Offutt SJ, et al. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron. 2018;98:1020–1030.e4.Google Scholar
- 96.Mehić E, Xu JM, Caler CJ, et al. Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound. PLoS One. 2014;9:e86939.Google Scholar
- 97.Tufail Y, Yoshihiro A, Pati S, et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 2011;6:1453–1470.Google Scholar
- 98.Khraiche ML, Phillips WB, Jackson N, et al. Ultrasound induced increase in excitability of single neurons. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008;2008:4246–4249.Google Scholar
- 99.Legon W, Bansal P, Tyshynsky R, et al. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep. 2018;8:10007.Google Scholar
- 100.Legon W, Ai L, Bansal P, et al. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum. Brain Mapp. 2018;39:1995–2006.Google Scholar
- 101.Filonenko EA, Khokhlova VA. Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound. Acoust. Phys. 2001;47:468–475.Google Scholar
- 102.Miranda PC. Physics of effects of transcranial brain stimulation. Handb. Clin. Neurol. 2013;116:353–366.Google Scholar
- 103.Hariz MI, Hariz G-M. Therapeutic stimulation versus ablation. Handb. Clin. Neurol. 2013;116:63–71.Google Scholar
- 104.Van Ness P, Skarpaas TC, Morrell M. Long-Term Outcome of Adults with Medically Intractable Mesial Temporal Lobe Seizures Treated with Responsive Neurostimulation (S52.001). Neurology. 2016;86:S52.001.Google Scholar
- 105.Khanna N, Gandhi D, Steven A, et al. Intracranial Applications of MR Imaging–Guided Focused Ultrasound. AJNR Am. J. Neuroradiol. [Internet]. 2016 [cited 2018 Jul 15]; Available from: http://www.ajnr.org/content/early/2016/08/18/ajnr.A4902.abstract.
- 106.Fishman PS. Thalamotomy for essential tremor: FDA approval brings brain treatment with FUS to the clinic. J Ther Ultrasound. 2017;5:19.Google Scholar
- 107.Shukla ND, Ho AL, Pendharkar AV, et al. Laser interstitial thermal therapy for the treatment of epilepsy: evidence to date. Neuropsychiatr. Dis. Treat. 2017;13:2469–2475.Google Scholar
- 108.Schramm J. Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia. 2008;49:1296–1307.Google Scholar
- 109.Rath SA, Braun V, Soliman N, et al. Results of DREZ coagulations for pain related to plexus lesions, spinal cord injuries and postherpetic neuralgia. Acta Neurochir. . 1996;138:364–369.Google Scholar
- 110.Mullan S, Lichtor T. Percutaneous microcompression of the trigeminal ganglion for trigeminal neuralgia. J. Neurosurg. 1983;59:1007–1012.Google Scholar
- 111.Monteith SJ, Medel R, Kassell NF, et al. Transcranial magnetic resonance–guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study. J. Neurosurg. 2013;118:319–328.Google Scholar
- 112.Payne AH, Hawryluk GW, Anzai Y, et al. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability. Neural Regeneration Res. 2017;12:2045–2049.Google Scholar
- 113.Horodyckid C, Canney M, Vignot A, et al. Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: a multiparametric study in a primate model. J. Neurosurg. 2017;126:1351–1361.Google Scholar
- 114.Hwang GM, Lani SW, Rosenberg AP, et al. Forward-looking engineering concepts for ultrasonic modulation of neural circuit activity in humans. Micro- and Nanotechnology Sensors, Systems, and Applications X. International Society for Optics and Photonics; 2018. p. 106391J.Google Scholar
- 115.Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys. Med. Biol. 2016;61:R206–R248.Google Scholar
- 116.Rosnitskiy PB, Vysokanov BA, Gavrilov LR, et al. Method for Designing Multielement Fully Populated Random Phased Arrays for Ultrasound Surgery Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018;65:630–637.Google Scholar
- 117.Hynynen K, Clement GT, McDannold N, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn. Reson. Med. 2004;52:100–107.Google Scholar
- 118.Viessmann OM, Eckersley RJ, Christensen-Jeffries K, et al. Acoustic super-resolution with ultrasound and microbubbles. Phys. Med. Biol. 2013;58:6447–6458.Google Scholar
- 119.Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527:499–502.Google Scholar
- 120.Hamani C, Richter E, Schwalb JM, et al. Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery. 2005;56:1313–1321; discussion 1321–1324.Google Scholar
- 121.Rosin B, Slovik M, Mitelman R, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–384.Google Scholar
- 122.Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 2013;74:449–457.Google Scholar