Fatigue Behaviour Study of the Shear Stud Using Crack Box Technology and M Integral Method

  • Jun Xu
  • Huahuai Sun
  • Zhenlin Xie
  • Jianyuan SunEmail author


Steel and concrete composite structures can give full play to mechanical advantages of the two materials, so it is widely used all over the world. As the key components to ensure the compatibility deformation of two materials, the importance of shear studs to the security of structures is self-evident. However, fatigue research on shear studs is still lagging behind, and there is a potential safety hazard. Thus, based on crack box technique, the M integral and the maximum tangential stress criterion, this paper presents a simulation method for fatigue crack propagation of studs in three-dimensional mixed fracture mode. The crack propagation of Type A fracture in studs is simulated under fatigue load of constant slip between steel and concrete. Results show that the crack deflection angle of stud increases with slip effect. In crack propagation process, the stress intensity factor KI is the highest and KIII is the smallest, whose effect on the deflection angle during crack propagation can be reasonably ignored. The crack surface inclines slightly to the bottom of welding collar while the crack expands in the stud.


Steel–concrete composite structure Shear stud Crack propagation simulation Crack box Mixed mode fracture criterion 


  1. Anderson, T. (2005). Fracture mechanics: Fundamentals and applications. Boca Raton, FL: CRC Press.CrossRefzbMATHGoogle Scholar
  2. Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229–256.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bittencourt, T. N., Wawrzynek, P. A., Ingraffea, A. R., et al. (1996). Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics, 55(2), 321–334.CrossRefGoogle Scholar
  4. Bode, H., & Leffer, A. (2002). The fatigue behaviour of the shear connection of continuous composite beams under non-static loading. Stahlbau, 71(3), 192–203. (in German).CrossRefGoogle Scholar
  5. Chapman, J., & Balakrishnan, S. (1964). Experiments on composite beams. The Structural Engineer, 42(11), 369–383.Google Scholar
  6. Chinn, J. (1965). Pushout tests on lightweight composite slabs. AISC Engineering Journal, 2(4), 129–134.Google Scholar
  7. Cisilino, A., & Aliabadi, M. (1999). Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems. Engineering Fracture Mechanics, 63(6), 713–733.CrossRefGoogle Scholar
  8. Citarella, R., Giannella, V., Lepore, M., et al. (2017). Dual boundary element method and finite element method for mixed-mode crack propagation simulations in a cracked hollow shaft. Fatigue and Fracture of Engineering Materials and Structures, 10, 84–98.Google Scholar
  9. Dallam, L. N. (1968). Push-out tests of stud and channel shear connectors in normal-weight and lightweight concrete slabs. Columbia: University of Missouri-Columbia.Google Scholar
  10. Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.CrossRefGoogle Scholar
  11. Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(4), 519–525.CrossRefGoogle Scholar
  12. Feldmann, M., Gesella, H., & Leffer, A. (2006). The cyclic force-slip behaviour of headed studs under non-static service loads: Experimental studies and analytical descriptions. In 5th international conference on composite construction in steel and concrete. Mpumalanga, July.Google Scholar
  13. Gesella, H. (2006). Zur Vorhersage des Rissfortschritts bei einbetonierten Kopfbolzendübeln in Verbundträgern unter nicht ruhender Belastung. Kaiserslautern German: Technische Universität Kaiserslautern.Google Scholar
  14. Ha, Y. D., & Bobaru, F. (2010). Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture, 162(1–2), 229–244.CrossRefzbMATHGoogle Scholar
  15. Hiragi, H., Matsui, S., & Fukumoto, Y. (1990). Static and fatigue strength of studs. In IABSE symposium. Brussels.Google Scholar
  16. Huang, R., Sukumar, N., & Prévost, J. H. (2003). Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications. International Journal of Solids and Structures, 40(26), 7539–7552.CrossRefzbMATHGoogle Scholar
  17. Jung, S. (1995). Growing crack analyses using nodal release technique. M.S. thesis. Boston: Massachusetts Institute of Technology.Google Scholar
  18. Klein, P., & Gao, H. (1998). Crack nucleation and growth as strain localization in a virtual-bond continuum. Engineering Fracture Mechanics, 61(1), 21–48.CrossRefGoogle Scholar
  19. Kuang, Z. B., & Ma, F. S. (2002). Crack tip field. Xi’an: Xi’an Jiaotong University Press. (in Chinese).Google Scholar
  20. Lam, D., & El-Lobody, E. (2005). Behavior of headed stud shear connectors in composite beam. Journal of Structural Engineering, 131(1), 96–107.CrossRefGoogle Scholar
  21. Lebaillif, D., & Recho, N. (2007). Brittle and ductile crack propagation using automatic finite element crack box technique. Engineering Fracture Mechanics, 74(11), 1810–1824.CrossRefGoogle Scholar
  22. Leffer, A. (2003). Zum Ermüdungsverhalten einbetonierter Kopfbolzendübel unter realitätsnaher Beanspruchung im Verbundbrückenbau: Haunschild, Jessica, u. Christian Schön.Google Scholar
  23. Lin, X., & Smith, R. (1999a). Finite element modelling of fatigue crack growth of surface cracked plates: Part I: The numerical technique. Engineering Fracture Mechanics, 63(5), 503–522.CrossRefGoogle Scholar
  24. Lin, X., & Smith, R. (1999b). Finite element modelling of fatigue crack growth of surface cracked plates: Part II: Crack shape change. Engineering Fracture Mechanics, 63(5), 523–540.CrossRefGoogle Scholar
  25. Lin, X., & Smith, R. (1999c). Finite element modelling of fatigue crack growth of surface cracked plates: Part III: SIF and fatigue crack growth life. Engineering Fracture Mechanics, 63(5), 541–556.CrossRefGoogle Scholar
  26. Oehlers, D. J. (1990). Deterioration in strength of stud connectors in composite bridge beams. Journal of Structural Engineering, 116(12), 3417–3431.CrossRefGoogle Scholar
  27. Oehlers, D. J., & Coughlan, C. G. (1986). The shear stiffness of stud shear connections in composite beams. Journal of Constructional Steel Research, 6(4), 273–284.CrossRefGoogle Scholar
  28. Oehlers, D. J., & Foley, L. (1985). The fatigue strength of stud shear connectors in composite beams (pp. 349–364). London: Institution of Civil Engineers.Google Scholar
  29. Owen, D. R. J., & Fawkes, A. J. (1983). Engineering fracture mechanics: Numerical methods and applications. Swansea: Pineridge Press.Google Scholar
  30. Palaniswamy, K., & Knauss, W. G. (1972). Propagation of a crack under general, in-plane tension. International Journal of Fracture Mechanics, 8(1), 114–117.CrossRefGoogle Scholar
  31. Pook, L. (1985). The fatigue crack direction and threshold behaviour of mild steel under mixed mode I and III loading. International Journal of Fatigue, 7(1), 21–30.CrossRefGoogle Scholar
  32. Pook, L. (2013). A 50-year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue and Fracture of Engineering Materials and Structures, 36(8), 699–723.CrossRefGoogle Scholar
  33. Réthoré, J., Roux, S., & Hild, F. (2010). Hybrid analytical and extended finite element method (HAX-FEM): A new enrichment procedure for cracked solids. International Journal for Numerical Methods in Engineering, 81(3), 269–285.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Richard, H. A., Schollmann, M., & Fulland, M. (2013). Crack growth in three-dimensional structures. ECF14 Cracow. Germany: Institute of Applied Mechanics, University of Paderborn.Google Scholar
  35. Schöllmann, M., Richard, H. A., Kullmer, G., et al. (2002). A new criterion for the prediction of crack development in multiaxially loaded structures. International Journal of Fracture, 117(2), 129–141.CrossRefGoogle Scholar
  36. Shim, C. S., Lee, P. G., & Yoon, T. Y. (2004). Static behavior of large stud shear connectors. Engineering Structures, 26(12), 1853–1860.CrossRefGoogle Scholar
  37. Sih, G. C. (1973). Energy-density concept in fracture mechanics. Engineering Fracture Mechanics, 5(4), 1037–1040.CrossRefGoogle Scholar
  38. Sih, G. C. (1974). Strain energy density factor applied to mixed mode crack problems. International Journal of Fracture, 10(3), 305–321.CrossRefGoogle Scholar
  39. Sih, G. C. (1991). Mechanics of fracture initiation and propagation. Amsterdam: Springer.CrossRefGoogle Scholar
  40. Sukumar, N., Moës, N., Moran, B., et al. (2000). Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering, 48(11), 1549–1570.CrossRefzbMATHGoogle Scholar
  41. Univ.-Ing, M. F., & Dipl.-Ing, H. G. (2005). Realistic prediction of crack propagation of headed studs incomposite beams under cyclic loading. Stahlbau, 74(10), 767–779. (in German).CrossRefGoogle Scholar

Copyright information

© Korean Society of Steel Construction 2019

Authors and Affiliations

  • Jun Xu
    • 1
  • Huahuai Sun
    • 1
  • Zhenlin Xie
    • 2
  • Jianyuan Sun
    • 1
    Email author
  1. 1.Department of Bridge EngineeringTongji UniversityShanghaiChina
  2. 2.Lin Tung-Yen and Li Guo-Hao Consultants Ltd.ShanghaiChina

Personalised recommendations