Advertisement

International Journal of Steel Structures

, Volume 18, Issue 5, pp 1784–1800 | Cite as

Tension–Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Xiaogang Huang
  • Zhen Zhou
  • Yazhi Zhu
  • Dongping Zhu
  • Lu Lu
Article
  • 107 Downloads

Abstract

Tension–shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension–shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension–shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension–shear fracture models were calibrated based on the hybrid experimental–numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension–shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

Keywords

Ductile fracture Tension–shear loading Structural steel Failure models calibration Experiments Finite element analysis 

Notes

Acknowledgements

The research described in this paper was sponsored by National Natural Science Foundation of China” (51208095), Qing Lan Project” of Jiangsu Province, Six Talent Peaks Project” of Jiangsu Province (JZ-003), the Fundamental Research Funds for the Central Universities” (KYLX15 0080) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)”. The supports are gratefully acknowledged.

References

  1. Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications (3rd ed.). Boca Raton: CRC Press.zbMATHCrossRefGoogle Scholar
  2. Bai, Y., Teng, X., & Wierzbicki, T. (2009). On the application of stress triaxiality formula for plane strain fracture testing. Journal of Engineering Materials and Technology, 131(2), 021002.CrossRefGoogle Scholar
  3. Bai, Y., & Wierzbicki, T. (2010). Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture, 161(1), 1–20.zbMATHCrossRefGoogle Scholar
  4. Bao, Y. (2003). Prediction of ductile crack formation in uncracked bodies. Ph.D. Dissertation, Massachusetts Institute of Technology.Google Scholar
  5. Bao, Y., & Wierzbicki, T. (2004). On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46(1), 81–98.CrossRefGoogle Scholar
  6. Barsoum, I., & Faleskog, J. (2007). Rupture mechanisms in combined tension and shear—experiments. International Journal of Solids and Structures, 44(6), 1768–1786.zbMATHCrossRefGoogle Scholar
  7. Barsoum, I., & Faleskog, J. (2011). Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence. International Journal of Solids and Structures, 48(6), 925–938.zbMATHCrossRefGoogle Scholar
  8. Beese, A. M., Luo, M., Li, Y., et al. (2010). Partially coupled anisotropic fracture model for aluminum sheets. Engineering Fracture Mechanics, 77(7), 1128–1152.CrossRefGoogle Scholar
  9. Bomarito, G., & Warner, D. (2015). Micromechanical investigation of ductile failure in al 5083-h116 via 3d unit cell modeling. Journal of the Mechanics and Physics of Solids, 74, 97–110.CrossRefGoogle Scholar
  10. Bridgman, P. W. (1964). Studies in large plastic flow and fracture. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  11. Dunand, M., & Mohr, D. (2011). Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. Engineering Fracture Mechanics, 78(17), 2919–2934.CrossRefGoogle Scholar
  12. Ghahremaninezhad, A., & Ravi-Chandar, K. (2013). Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading. International Journal of Fracture, 180(1), 23–39.CrossRefGoogle Scholar
  13. Gologanu, M., Leblond, J. B., & Devaux, J. (1993). Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities. Journal of the Mechanics and Physics of Solids, 41(11), 1723–1754.zbMATHCrossRefGoogle Scholar
  14. Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99(1), 2–15.CrossRefGoogle Scholar
  15. Hooputra, H., Gese, H., Dell, H., et al. (2004). A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness, 9(5), 449–464.CrossRefGoogle Scholar
  16. Huang, B., Wang, C., Chen, Q., et al. (2013). Low-cycle fatigue test of Q235 steel buckling-restrained braces. China Civil Engineering Journal, 6, 009.Google Scholar
  17. Jia, L. J., Ge, H., Shinohara, K., et al. (2016). Experimental and numerical study on ductile fracture of structural steels under combined shear and tension. Journal of Bridge Engineering, 21(5), 04016008.CrossRefGoogle Scholar
  18. Jia, L. J., & Kuwamura, H. (2013). Ductile fracture simulation of structural steels under monotonic tension. Journal of Structural Engineering, 140(5), 04013115.CrossRefGoogle Scholar
  19. Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31–48.CrossRefGoogle Scholar
  20. Jones, S. L., Fry, G. T., & Engelhardt, M. D. (2002). Experimental evaluation of cyclically loaded reduced beam section moment connections. Journal of Structural Engineering, 128(4), 441–451.CrossRefGoogle Scholar
  21. Kang, L., Ge, H., & Fang, X. (2016). An improved ductile fracture model for structural steels considering effect of high stress triaxiality. Construction and Building Materials, 115, 634–650.CrossRefGoogle Scholar
  22. Kang, L., Ge, H., & Kato, T. (2015). Experimental and ductile fracture model study of single-groove welded joints under monotonic loading. Engineering Structures, 85, 36–51.CrossRefGoogle Scholar
  23. Kanvinde, A. (2016). Predicting fracture in civil engineering steel structures: State of the art. Journal of Structural Engineering, 143, 03116001.CrossRefGoogle Scholar
  24. Kanvinde, A. M., & Deierlein, G. G. (2004). Micromechanical simulation of earthquake-induced fracture in steel structures. Stanford, California: Blume Center TR145, Stanford University.Google Scholar
  25. Kanvinde, A. M., & Deierlein, G. G. (2006). Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels. Journal of Structural Engineering, 132(12), 1907–1918.CrossRefGoogle Scholar
  26. Kanvinde, A. M., & Deierlein, G. G. (2007). Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue. Journal of Engineering Mechanics, 133(6), 701–712.CrossRefGoogle Scholar
  27. Li, H., Fu, M., Lu, J., & Yang, H. (2011). Ductile fracture: Experiments and computations. International Journal of Plasticity, 27(2), 147–180.CrossRefGoogle Scholar
  28. Li, W., Liao, F., Zhou, T., et al. (2016). Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle. Journal of Constructional Steel Research, 123, 1–17.CrossRefGoogle Scholar
  29. Li, C., Zhou, Z., Zhu, Y., et al. (2017). A unified damage factor model for ductile fracture of steels with different void growth and shrinkage rates. Fatigue & Fracture of Engineering Materials & Structures, 41, 1132–1145.CrossRefGoogle Scholar
  30. Lou, Y., Chen, L., Clausmeyer, T., et al. (2017). Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. International Journal of Solids and Structures, 112, 169–184.CrossRefGoogle Scholar
  31. Madou, K., & Leblond, J. B. (2012a). A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I: Limit-analysis of some representative cell. Journal of the Mechanics and Physics of Solids, 60(5), 1020–1036.MathSciNetCrossRefGoogle Scholar
  32. Madou, K., & Leblond, J. B. (2012b). A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II: Determination of yield criterion parameters. Journal of the Mechanics and Physics of Solids, 60(5), 1037–1058.MathSciNetCrossRefGoogle Scholar
  33. Mahin, S. A. (1998). Lessons from damage to steel buildings during the Northridge earthquake. Engineering Structures, 20(4–6), 261–270.CrossRefGoogle Scholar
  34. Malcher, L., Andrade Pires, F. M., & César De Sá, J. M. A. (2012). An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 30, 81–115.CrossRefGoogle Scholar
  35. Momenzadeh, S., Kazemi, M. T., & Asl, M. H. (2017). Seismic performance of reduced web section moment connections. International Journal of Steel Structures, 17(2), 413–425.CrossRefGoogle Scholar
  36. Myers AT, Deierlein GG, Kanvinde AM. (2009). Testing and probabilistic simulation of ductile fracture initiaion in structural steel. Blume Cent Rep.Google Scholar
  37. Nahshon, K., & Hutchinson, J. W. (2008). Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 27(1), 1–17.zbMATHCrossRefGoogle Scholar
  38. Nakashima, M., Inoue, K., & Tada, M. (1998). Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake. Engineering Structures, 20(4–6), 271–281.CrossRefGoogle Scholar
  39. Nielsen, K. L., Dahl, J., & Tvergaard, V. (2012). Collapse and coalescence of spherical voids subject to intense shearing: Studied in full 3D. International Journal of Fracture, 177(2), 97–108.CrossRefGoogle Scholar
  40. Oh, C. S., Kim, N. H., Kim, Y. J., et al. (2011). A finite element ductile failure simulation method using stress-modified fracture strain model. Engineering Fracture Mechanics, 78(1), 124–137.CrossRefGoogle Scholar
  41. Papasidero, J., Doquet, V., & Mohr, D. (2014). Determination of the effect of stress state on the onset of ductile fracture through tension–torsion experiments. Experimental Mechanics, 54(2), 137–151.CrossRefGoogle Scholar
  42. Qi, L., Xue, J., & Leon, R. T. (2017). Experimental and analytical investigation of transition steel connections in traditional-style buildings. Engineering Structures, 150, 438–450.CrossRefGoogle Scholar
  43. Rice, J. R., & Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 17(3), 201–217.CrossRefGoogle Scholar
  44. Scheyvaerts, F., Onck, P. R., Tekoglu, C., et al. (2011). The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. Journal of the Mechanics and Physics of Solids, 59(2), 373–397.zbMATHCrossRefGoogle Scholar
  45. Smith, C., Kanvinde, A., & Deierlein, G. (2017). A local criterion for ductile fracture under low-triaxiality axisymmetric stress states. Engineering Fracture Mechanics, 169, 321–335.CrossRefGoogle Scholar
  46. Wang, Y., Zhou, H., Shi, Y., et al. (2011). Fracture prediction of welded steel connections using traditional fracture mechanics and calibrated micromechanics based models. International Journal of Steel Structures, 11(3), 351–366.CrossRefGoogle Scholar
  47. Wierzbicki, T., Xue, L. (2005). On the effect of the third invariant of the stress deviator on ductile fracture. Impact and Crashworthiness Laboratory, Technical report, 136.Google Scholar
  48. Xue, L. (2008). Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics, 75(11), 3343–3366.CrossRefGoogle Scholar
  49. Xue, Z., Faleskog, J., & Hutchinson, J. W. (2013). Tension–torsion fracture experiments–Part II: Simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain. International Journal of Solids and Structures, 50(25), 4258–4269.CrossRefGoogle Scholar
  50. Xue, Z., Pontin, M. G., Zok, F. W., et al. (2010). Calibration procedures for a computational model of ductile fracture. Engineering Fracture Mechanics, 77(3), 492–509.CrossRefGoogle Scholar
  51. Zhou, Z., Xie, Q., Lei, X. C., et al. (2015). Experimental investigation of the hysteretic performance of dual-tube self-centering buckling-restrained braces with composite tendons. Journal of Composites for Construction, 19(6), 04015011.CrossRefGoogle Scholar
  52. Zhu, Y., & Engelhardt, M. D. (2018a). A nonlocal triaxiality and shear dependent continuum damage model for finite strain elastoplasticity. European Journal of Mechanics-A/Solids, 71, 16–33.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Zhu, Y., & Engelhardt, M. D. (2018b). Prediction of ductile fracture for metal alloys using a shear modified void growth model. Engineering Fracture Mechanics, 190, 491–513.CrossRefGoogle Scholar

Copyright information

© Korean Society of Steel Construction 2018

Authors and Affiliations

  • Xiaogang Huang
    • 1
  • Zhen Zhou
    • 1
  • Yazhi Zhu
    • 2
  • Dongping Zhu
    • 1
  • Lu Lu
    • 3
  1. 1.Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of EducationSoutheast UniversityNanjingChina
  2. 2.Department of Structural EngineeringTongji UniversityShanghaiChina
  3. 3.State Grid Jiangsu Economic Research InstituteNanjingChina

Personalised recommendations