Advertisement

Ambio

pp 1–12 | Cite as

Spatially differentiated regulation: Can it save the Baltic Sea from excessive N-loads?

  • Jens Christian RefsgaardEmail author
  • Anne L. Hansen
  • Anker L. Højberg
  • Jørgen E. Olesen
  • Fatemeh Hashemi
  • Przemyslaw Wachniew
  • Anders Wörman
  • Alena Bartosova
  • Nico Stelljes
  • Boris Chubarenko
Ecosystem Governance in the Baltic Sea

Abstract

The Baltic Sea Action Plan and the EU Water Framework Directive both require substantial additional reductions of nutrient loads (N and P) to the marine environment. Focusing on nitrogen, we present a widely applicable concept for spatially differentiated regulation, exploiting the large spatial variations in the natural removal of nitrate in groundwater and surface water. By targeting mitigation measures towards areas where nature’s own capacity for removal is low, spatially differentiated regulation can be more cost-effective than the traditional uniform regulation. We present a methodology for upscaling local modelling results on targeted measures at field scale to Baltic Sea drainage basin scale. The paper assesses the potential gain and discusses key challenges related to implementation of spatially differentiated regulation, including the need for more scientific knowledge, handling of uncertainties, practical constraints related to agricultural practice and introduction of co-governance regimes.

Keywords

Baltic Sea drainage basin Co-governance EU Water Framework Directive N-loads from agriculture Spatially differentiated regulation 

Notes

Acknowledgement

This work was carried out as part of the BONUS SOILS2SEA project (www.Soils2Sea.eu), which received funding from BONUS (Art 185), funded jointly by the EU and Innovation Fund Denmark, The Swedish Environmental Protection Agency, The Polish National Centre for Research and Development, The German Ministry for Education and Research and The Russian Foundation for Basic Research (RFBR).

References

  1. Arheimer, B., J. Dahne, and C. Donnelly. 2012. Climate change impact on riverine nutrient load and land based remedial measures of the Baltic Sea Action Plan. Ambio 41: 600–612.CrossRefGoogle Scholar
  2. Bartosova, A., R. Capell, J.E. Olesen, M. Jabloun, C. Donnelly, G. Strandberg, J. Strömqvist, I. Morén et al. 2018. Projected impacts of climate, anthropogenic changes, and remedial measures on nutrient loads to the Baltic Sea. BONUS Soils2Sea Deliverable 5.4. Swedish Meteorological and Hydrological Institute, Norrköping, www.Soils2Sea.eu.
  3. Bartholomé, E., and A.S. Belward. 2005. GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing 26: 1959–1977.CrossRefGoogle Scholar
  4. Berntsen, J., A. Thomsen, K. Schelde, O.M. Hansen, L. Knudsen, N. Broge, H. Hougaard, and R. Hørfarter. 2006. Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precision Agriculture 7: 65–83.CrossRefGoogle Scholar
  5. Beven, K. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320: 18–36.CrossRefGoogle Scholar
  6. Boano, F., J.W. Harvey, A. Marion, A.I. Packman, R. Revelli, L. Ridolfi, and A. Wörman. 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics 52: 603–679.CrossRefGoogle Scholar
  7. Bronstert, A., A. Bardoddy, C. Bismuth, H. Buiteveld, M. Disse, H. Engel, U. Fritsch, Y. Hundecha, et al. 2007. Multi-scale modelling of land-use change and river training effects on floods in the Rhine Basin. River Research and Applications 23: 1102–1125.CrossRefGoogle Scholar
  8. Dalgaard, T., B. Hansen, B. Hasler, O. Hertel, N.J. Hutchings, B. Jacobsen, B. Kronvang, J.E. Olesen, et al. 2014. Policies for agricultural nitrogen management: Trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters 9: 115002.CrossRefGoogle Scholar
  9. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle Scholar
  10. Domnin, D., B. Chubarenko, and A. Lewandowski. 2015. Vistula lagoon catchment: Atlas of water use. Moscow: Exlibris Press.Google Scholar
  11. Donnelly, C., B. Arheimer, R. Capell, J. Dahné, and J. Strömqvist. 2013. Regional overview of nutrient load in Europe: Challenges when using a large-scale model approach, E-HYPE. IAHS Publication 361: 49–58.Google Scholar
  12. Donnelly, C., J.C.M. Andersson, and B. Arheimer. 2016. Using flow signatures and catchment similarities to evaluate a multi-basin model (E-HYPE) across Europe. Hydrological Sciences Journal 61: 255–273.CrossRefGoogle Scholar
  13. Elmgren, R., T. Blenckner, and A. Andersson. 2015. Baltic Sea management: Successes and failures. Ambio 44: 335–344.CrossRefGoogle Scholar
  14. Hansen, A.L., B.S.B. Christensen, V. Ernstsen, X. He, and J.C. Refsgaard. 2014a. A concept for estimating depth of the redox interface for catchment-scale nitrate modelling in a till area in Denmark. Hydrogeology Journal 22: 1639–1655.CrossRefGoogle Scholar
  15. Hansen, A.L., D. Gunderman, X. He, and J.C. Refsgaard. 2014b. Uncertainty assessment of spatially distributed nitrate reduction potential in groundwater using multiple geological realizations. Journal of Hydrology 519: 225–237.CrossRefGoogle Scholar
  16. Hansen, A.L., J.C. Refsgaard, J.E. Olesen, and C.D. Børgesen. 2017. Potential benefits of a spatially targeted regulation based on detailed N-reduction maps to decrease N-load from agriculture in a small groundwater dominated catchment. Science of the Total Environment 595: 325–336.CrossRefGoogle Scholar
  17. Hansen, A.L., C. Donnelly, J.C. Refsgaard, and I.B. Karlsson. 2018. Simulation of nitrate reduction in groundwater: an upscaling approach from small catchments to the Baltic Sea basin. Advances in Water Resources 111: 58–69.CrossRefGoogle Scholar
  18. Hansen, A.L., R. Jakobsen, J.C. Refsgaard, A.L. Højberg, B.V. Iversen, and C. Kjærgaard. 2019. Groundwater dynamics and the effect of tile drainage on flow across the redox interface in a Danish Weichsel till area. Advances in Water Resources 123: 23–39.CrossRefGoogle Scholar
  19. Hashemi, F., J.E. Olesen, T. Dalgaard, and C.D. Børgesen. 2016. Review of scenario analyses to reduce agricultural nitrogen and phosphorous loading to the aquatic environment. Science of the Total Environment 573: 608–626.CrossRefGoogle Scholar
  20. Hashemi, F., J.E. Olesen, A.L. Hansen, C.D. Børgesen, and T. Dalgaard. 2018a. Spatially differentiated strategies for reducing nitrate loads from agriculture in two Danish catchments. Journal of Environmental Management 208: 77–91.CrossRefGoogle Scholar
  21. Hashemi, F., J.E. Olesen, M. Jabloun, and A.L. Hansen. 2018b. Reducing uncertainty of estimated nitrogen load reductions to aquatic systems through spatially targeting agricultural mitigation measures using groundwater nitrogen reduction. Journal of Environmental Management 218: 451–464.CrossRefGoogle Scholar
  22. HELCOM (2007) Baltic Sea Action Plan. HELCOM Ministerial Meeting Krakow, Poland, 15. Retrieved November 2007 from http://helcom.fi/baltic-sea-action-plan.
  23. HELCOM (2013) Summary report on the development of revised Maximum Allowable Inputs (MAI) and updated Country Allocated Reduction Targets (CART) of the Baltic Sea Action Plan. 2013 HELCOM Ministerial Meeting. http://www.helcom.fi/Documents/Ministerial2013/Associated%20documents/Supporting/Summary%20report%20on%20MAI-CART.pdf.
  24. Højberg, A.L., J. Windolf, C.D. Børgesen, L. Troldborg, H. Tornbjerg, G. Blicher-Mathiesen, B. Kronvang, H. Todsen et al. .2015. En ny kvælstofmodel. Oplandsmodel til belastning og virkemidler. Metode rapport (A new nitrogen model. Catchment model for loads and measures. Methodology Report—In Danish). GEUS and Aarhus University. http://www.geus.dk/DK/water-soil/water-cycle/Documents/national_kvaelstofmodel_metoderapport.pdf.
  25. Højberg, A.L., A.L. Hansen, P. Wachniew, A. Zurek, S. Virtanen, J. Arustiene, J. Strömqvist, K. Rankinen, and J.C. Refsgaard. 2017. Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. Journal of Hydrology: Regional Studies 12: 50–68.Google Scholar
  26. Jacobsen, B.H., and A.L. Hansen. 2016. Economic gains from targeted measures related to non-point pollution in agriculture based on detailed nitrate reduction maps. Science of the Total Environment 556: 264–275.CrossRefGoogle Scholar
  27. Jakobsen, R., A.L. Hansen, K. Hinsby, D. Postma, and J.C. Refsgaard. Reactive nitrogen in a clay till hill slope field system. In Sustainable ecosystem governance in the Baltic Sea region under changing climate and land use, eds. J. Smart and L. Martinsen, Ambio, vol. 48, Special Issue. (unpubl. results).Google Scholar
  28. Karlsson, I.B., T.O. Sonnenborg, J.C. Refsgaard, D. Trolle, C.D. Børgesen, J.E. Olesen, E. Jeppesen, and K.H. Jensen. 2016. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology 535: 301–317.CrossRefGoogle Scholar
  29. Lindström, G., C. Pers, J. Rosberg, J. Strömqvist, and B. Arheimer. 2010. Development and testing of the HYPE (hydrological predictions for the environment) water quality model for different spatial scales. Hydrology Research 41: 295–319.CrossRefGoogle Scholar
  30. Postma, D., C. Boesen, H. Kristiansen, and F. Larsen. 1991. Nitrate reduction in an unconfined aquifer: Water chemistry, reduction processes, and geochemical modelling. Water Resources Research 27: 2027–2045.CrossRefGoogle Scholar
  31. Refsgaard, J.C., M. Thorsen, J.B. Jensen, S. Kleeschulte, and S. Hansen. 1999. Large scale modelling of groundwater contamination from nitrogen leaching. Journal of Hydrology 221: 117–140.CrossRefGoogle Scholar
  32. Refsgaard, J.C., A.L. Højberg, X. He, A.L. Hansen, S.H. Rasmussen, and S. Stisen. 2016. Where are the limits of model predictive capabilities? Hydrological Processes, Keith Beven Tribute 30: 4956–4965.CrossRefGoogle Scholar
  33. Reusch, T.B.H., J. Dierking, H. Andersson, E. Bonsdorff, J. Carstensen, M. Casini, M. Czajkowski, B. Hasler, et al. 2018. The Baltic Sea as a time machine for the future coastal ocean. Science Advances 4: eaar8195.CrossRefGoogle Scholar
  34. Riml, J., I. Morén, and A. Wörman. The potential of stream restorations to reduce the export of agricultural nitrogen in Sweden. In Sustainable ecosystem governance in the Baltic Sea region under changing climate and land use, eds. J. Smart and L. Martinsen, Ambio, vol. 48, Special Issue. (unpubl. results).Google Scholar
  35. Stelljes, N., S. Albrecht, G. Martinez, K. McGlade. 2017a. Proposals for new governance concepts and policy options. BONUS SOILS2SEA Deliverable 6.2. Ecologic Institute, Berlin. www.Soils2Sea.eu.
  36. Stelljes, N., K. McGlade, G. Martinez. 2017b. Results from stakeholder workshops on governance concepts. BONUS SOILS2SEA Deliverable 6.4. Ecologic Institute, Berlin. www.Soils2Sea.eu.
  37. Wachniew, P., D. Bar-Michalczyk, T. Michalczyk, D. Zięba, J. Kania, K. Różański, S. Witczak, A.J. Żurek. 2018. Proposal for differentiated regulations for Kocinka catchment. Biogeochemical processes and flow paths. BONUS Soils2Sea Deliverable 3.6. AGH University of Science and Technology, Krakow. www.Soils2Sea.eu.
  38. Wortley, L., J.M. Hero, and M. Howes. 2013. Evaluating ecological restoration success: A review of the literature. Restoration Ecology 21: 537–543.CrossRefGoogle Scholar
  39. Wulff, F., C. Humborg, H.E. Andersen, G. Blicher-Mathiesen, M. Czajkowski, K. Elofsson, A. Fonnesbech-Wulff, B. Hasler, et al. 2014. Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment. Ambio 43: 11–25.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Geological Survey of Denmark and GreenlandCopenhagenDenmark
  2. 2.Department of AgroecologyAarhus UniversityTjeleDenmark
  3. 3.AGH University of Science and TechnologyKrakowPoland
  4. 4.Royal Institute of TechnologyStockholmSweden
  5. 5.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  6. 6.Ecologic InstituteBerlinGermany
  7. 7.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
  8. 8.LandboSydAabenraaDenmark
  9. 9.Department of BioscienceAarhus UniversitySilkeborgDenmark

Personalised recommendations