Skip to main content

Advertisement

Log in

Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

In January 2017, hundreds of fires in Mediterranean Chile burnt more than 5000 km2, an area nearly 14 times the 40-year mean. We contextualize these fires in terms of estimates of global fire intensity using MODIS satellite record, and provide an overview of the climatic factors and recent changes in land use that led to the active fire season and estimate the impact of fire emissions to human health. The primary fire activity in late January coincided with extreme fire weather conditions including all-time (1979–2017) daily records for the Fire Weather Index (FWI) and maximum temperature, producing some of the most energetically intense fire events on Earth in the last 15-years. Fire activity was further enabled by a warm moist growing season in 2016 that interrupted an intense drought that started in 2010. The land cover in this region had been extensively modified, with less than 20% of the original native vegetation remaining, and extensive plantations of highly flammable exotic Pinus and Eucalyptus species established since the 1970s. These plantations were disproportionally burnt (44% of the burned area) in 2017, and associated with the highest fire severities, as part of an increasing trend of fire extent in plantations over the past three decades. Smoke from the fires exposed over 9.5 million people to increased concentrations of particulate air pollution, causing an estimated 76 premature deaths and 209 additional admissions to hospital for respiratory and cardiovascular conditions. This study highlights that Mediterranean biogeographic regions with expansive Pinus and Eucalyptus plantations and associated rural depopulation are vulnerable to intense wildfires with wide ranging social, economic, and environmental impacts, which are likely to become more frequent due to longer and more extreme wildfire seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abatzoglou, J.T., and A.P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113: 11770–11775.

    Article  CAS  Google Scholar 

  • Abatzoglou, J.T., A.P. Williams, L. Boschetti, M. Zubkova, and C.A. Kolden. 2018. Global patterns of interannual climate-fire relationships. Global Change Biology. https://doi.org/10.1111/gcb.14405.

    Article  Google Scholar 

  • Aguilera Vivanco, P. 2016. Socio-spatial dynamics in territories of forestry expansion: Curepto Commune, Maule Region 19742015. Bachelor’s Degree in History Thesis, Universidad de Chile (in Spanish).

  • Anonymous. 2017. Spreading like wildfire. Nature Climate Change 7: 755.

    Article  Google Scholar 

  • Aravena, J.C., C. LeQuesne, H. Jiménez, A. Lara, and J.J. Armesto. 2003. Fire history in central Chile: Tree-ring evidence and modern records. In Fire and climatic change in temperate ecosystems of the western Americas, ed. T. Veblen, W. Baker, G. Montenegro, and T. Swetnam. New York: Springer.

    Google Scholar 

  • Aronson, J., A. Del Pozo, C. Ovalle, J. Avendano, A. Lavin, and M. Etienne. 1998. Land use changes and conflicts in central Chile. In Landscape disturbance and biodiversity in Mediterranean-type ecosystems, ed. P. Rundel, G. Montenegro, and F. Jaksic. Berlin: Springer.

    Google Scholar 

  • Beck, H.E., A.I. van Dijk, V. Levizzani, J. Schellekens, D.G. Miralles, B. Martens, and A. de Roo. 2017. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences 21: 589.

    Article  Google Scholar 

  • Boer, M.M., R.H. Nolan, V. Resco De Dios, H. Clarke, O.F. Price, and R.A. Bradstock. 2018. Changing weather extremes call for early warning of potential for catastrophic fire, 1196–1202. Future: Earth’s.

    Google Scholar 

  • Boisier, J.P., R. Rondanelli, R.D. Garreaud, and F. Muñoz. 2016. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophysical Research Letters 43: 413–421.

    Article  Google Scholar 

  • Bowman, D.M., G.J. Williamson, J.T. Abatzoglou, C.A. Kolden, M.A. Cochrane, and A.M. Smith. 2017. Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution 1: 0058.

    Article  Google Scholar 

  • Bowman, D.M.J.S., J. Balch, P. Artaxo, W.J. Bond, M.A. Cochrane, C.M. D’Antonio, R. DeFries, F.H. Johnston, et al. 2011. The human dimension of fire regimes on Earth. Journal of Biogeography 38: 2223–2236.

    Article  Google Scholar 

  • Bowman, D.M.J.S., G.J. Williamson, L.D. Prior, and B.P. Murphy. 2016. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecology and Biogeography 25: 1166–1172.

    Article  Google Scholar 

  • Bozkurt, D., M. Rojas, J. Boisier, and J. Valdivieso. 2017. Climate change impacts on hydroclimatic regimes and extremes over Andean basins in Central Chile. Hydrology and Earth System Science Discussions 2017: 1–29.

    Google Scholar 

  • Bradstock, R.A. 2010. A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography 19: 145–158.

    Article  Google Scholar 

  • Broome, R.A., F.H. Johnston, J. Horsley, and G.G. Morgan. 2016. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Medical Journal of Australia 205: 407–408.

    Article  Google Scholar 

  • Carmona, A., M.E. Gonzalez, L. Nahuelhual, and J. Silva. 2012. Spatio-temporal effects of human drivers on fire danger in Mediterranean Chile. Bosque 33: 321–328.

    Article  Google Scholar 

  • Chávez, R.O., S.A. Estay, and C.G. Riquelme. 2017. npphen. An R package for estimating annual phenological cycle. Santiago: Uach, PUCV, Chile.

    Google Scholar 

  • Cifuentes, L.A., J. Vega, K. Köpfer, and L.B. Lave. 2000. Effect of the fine fraction of particulate matter versus the coarse mass and other pollutants on daily mortality in Santiago, Chile. Journal of the Air and Waste Management Association 50: 1287–1298.

    Article  CAS  Google Scholar 

  • Comisión Nacional del Medio Ambiente (CONAMA). 2006. Study of the climatic variability for the 21st century. Universidad de Chile Comisión Nacional del Medio Ambiente. (In Spanish).

  • Corporación Nacional Forestal (CONAF). 2017. Fire storm in Chile [Online]. Available: http://www.conaf.cl/incendios-forestales/tormenta-de-fuego-en-chile/. [Accessed 15 September 2017]. (In Spanish).

  • Cowling, R.M., P.W. Rundel, B.B. Lamont, M.K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology & Evolution 11: 362–366.

    Article  CAS  Google Scholar 

  • Departamento de Información y Estadísticas de Salud Ministerio de Salud (DEIS). 2017. Department of Statistics and Health Information of the Ministry of Health [Online]. Available: http://www.deis.cl/ [Accessed November 2017].

  • Diaz-Hormazabal, I., and M.E. Gonzalez. 2016. Spatio-temporal analysis of forest fires in the Maule region. Chile Bosque 37: 147–158 (In Spanish).

    Article  Google Scholar 

  • Fernandes, P.M. 2013. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landscape and Urban Planning 110: 175–182.

    Article  Google Scholar 

  • Fischer, A.P., T.A. Spies, T.A. Steelman, C. Moseley, B.R. Johnson, J.D. Bailey, A.A. Ager, P. Bourgeron, et al. 2016. Wildfire risk as a socioecological pathology. Frontiers in Ecology and the Environment 14: 276–284.

    Article  Google Scholar 

  • Garreaud, R., C. Alvarez-Garreton, J. Barichivich, J.P. Boisier, D. Christie, M. Galleguillos, C. LeQuesne, J. McPhee, et al. 2017. The 2010–2015 mega drought in Central Chile: Impacts on regional hydroclimate and vegetation. Hydrology and Earth Systems Science Discussions 2017: 1–37.

    Google Scholar 

  • Gibbons, P., L. Van Bommel, A.M. Gill, G.J. Cary, D.A. Driscoll, R.A. Bradstock, E. Knight, M.A. Moritz, et al. 2012. Land management practices associated with house loss in wildfires. PLoS ONE 7: e29212.

    Article  CAS  Google Scholar 

  • Gómez-González, S., F. Ojeda, and P.M. Fernandes. 2018. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environmental Science & Policy 81: 104–107.

    Article  Google Scholar 

  • González-Reyes, Á. 2016. Occurrence of drought events in the city of Santiago de Chile since mid 21st century. Revista de Geografía Norte Grande 2016: 21–32 (in Spanish).

    Article  Google Scholar 

  • González-Reyes, Á., J. McPhee, D.A. Christie, C. Le Quesne, P. Szejner, M.H. Masiokas, R. Villalba, A.A. Muñoz, et al. 2017. Spatiotemporal variations in hydroclimate across the Mediterranean Andes (30°–37° S) since the early twentieth century. Journal of Hydrometeorology 18: 1929–1942.

    Article  Google Scholar 

  • Heilmayr, R., C. Echeverría, R. Fuentes, and E.F. Lambin. 2016. A plantation-dominated forest transition in Chile. Applied Geography 75: 71–82.

    Article  Google Scholar 

  • Holz, A., J. Paritsis, I.A. Mundo, T.T. Veblen, T. Kitzberger, G.J. Williamson, E. Aráoz, C. Bustos-Schindler, et al. 2017. Southern Annular Mode drives multicentury wildfire activity in southern South America. Proceedings of the National Academy of Sciences 114: 9552–9557.

    Article  CAS  Google Scholar 

  • Huete, A., K. Didan, W. van Leeuwen, T. Miura, and E. Glenn. 2010. MODIS vegetation indices. In Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS, ed. B. Ramachandran, C.O. Justice, and M.J. Abrams. New York: Springer.

    Google Scholar 

  • Instituto Forestal (INFOR). 2016. Forest Yearbook 2016 (Bulletin Es). Santiago, Chile: Instituto Forestal, Ministerio de Agricultura (In Spanish).

    Google Scholar 

  • Instituto Nacional de Estadística (INE). 2017. 2017 Chilean National Census Data [Online]. Santiago, Chile: Instituto Nacional de Estadísticas. Available: http://www.censo2017.cl/. [Accessed November 2017].

  • Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson and D. M. Bowman 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6.

  • Keeley, J.E. 2012. Fire in mediterranean climate ecosystems—a comparative overview. Israel Journal of Ecology and Evolution 58: 123–135.

    Google Scholar 

  • Klubock, T.M. 2006. The Politics of Forests and Forestry on Chile’s Southern Frontier, 1880s–1940s. Hispanic American Historical Review 86: 535–570.

    Article  Google Scholar 

  • Lilliefors, H.W. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62: 399–402.

    Article  Google Scholar 

  • Marlon, J.R., P.J. Bartlein, D.G. Gavin, C.J. Long, R.S. Anderson, C.E. Briles, K.J. Brown, D. Colombaroli, et al. 2012. Long-term perspective on wildfires in the western USA. Proceedings of the National Academy of Sciences 109: E535–E543.

    Article  Google Scholar 

  • Martinez-Harms, M.J., H. Caceres, D. Biggs, and H.P. Possingham. 2017. After Chile’s fires, reforest private land. Science 356: 147–148.

    Article  CAS  Google Scholar 

  • McWethy, D.B., C. Whitlock, J.M. Wilmshurst, M.S. McGlone, M. Fromont, X. Li, A. Dieffenbacher-Krall, W.O. Hobbs, et al. 2010. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proceedings of the National Academy of Sciences 107: 21343–21348.

    Article  Google Scholar 

  • Montenegro, G., F. Díaz, M. Gómez, and R. Ginocchio. 2003. Regeneration potential of Chilean matorral after fire: An updated view. In Fire and climatic change in temperate ecosystems of the Western Americas, ed. T. Veblen, W. Baker, G. Montenegro, and T. Swetnam, 381–409. New York: Springer.

    Chapter  Google Scholar 

  • Moreira, F., O. Viedma, M. Arianoutsou, T. Curt, N. Koutsias, E. Rigolot, A. Barbati, P. Corona, et al. 2011. Landscape–wildfire interactions in southern Europe: implications for landscape management. Journal of Environmental Management 92: 2389–2402.

    Article  Google Scholar 

  • Moritz, M.A., E. Batllori, R.A. Bradstock, A.M. Gill, J. Handmer, P.F. Hessburg, J. Leonard, S. McCaffrey, et al. 2014. Learning to coexist with wildfire. Nature 515: 58–66.

    Article  CAS  Google Scholar 

  • Nauslar, N., J. Abatzoglou, and P. Marsh. 2018. The 2017 North Bay and Southern California fires: A case study. Fire 1: 18. https://doi.org/10.3390/fire1010018.

    Article  Google Scholar 

  • Nunes, A.N., L. Lourenço, and A.C.C. Meira. 2016. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Science of the Total Environment 573: 1190–1202.

    Article  CAS  Google Scholar 

  • Oliveira, S., J.L. Zêzere, M. Queirós, and J.M. Pereira. 2017. Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Applied Geography 88: 104–117.

    Article  Google Scholar 

  • Osborn, T.J., J. Barichivich, I. Harris, G. van der Schrier, and P.D. Jones. 2017. Monitoring global drought using the self-calibrating Palmer Drought Severity Index. Bulletin of the American Meteorological Society 98: S32–S33.

    Google Scholar 

  • Otero, L. 2016. Landscape and forestry plantations: Achitecture and ecology of plantation landscapes. Valdivia: Editorial Bosque y Paisaje (In Spanish).

    Google Scholar 

  • Parks, S.A., C. Miller, C.R. Nelson, and Z.A. Holden. 2014. Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas. Ecosystems 17: 29–42.

    Article  Google Scholar 

  • Parrington, M., F. Di Giuseppe, C. Vitolo, and F. Wetterhall. 2017. Devastating wildfires in Chile in January 2017. ECMWF Newsletter 151: 12–13.

    Google Scholar 

  • Pausas, J.G., and S. Fernández-Muñoz. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic change 110: 215–226.

    Article  Google Scholar 

  • Peña-Fernández, E. and L. Valenzuela-Palma. 2005. The Increase in Forest Fires in Natural Woodland and Forestry Plantations in Chile. Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View.

  • Pliscoff, P., and T. Fuentes-Castillo. 2011. Representativeness of terrestrial ecosystems in Chile’s protected area system. Environmental Conservation 38: 303–311.

    Article  Google Scholar 

  • Reid, C.E., M. Brauer, F.H. Johnston, M. Jerrett, J.R. Balmes, and C.T. Elliott. 2016. Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives 124: 1334.

    Article  Google Scholar 

  • Sanhueza, P.A., M.A. Torreblanca, L.A. Diaz-Robles, L.N. Schiappacasse, M.P. Silva, and T.D. Astete. 2009. Particulate Air Pollution and Health Effects for Cardiovascular and Respiratory Causes in Temuco, Chile: A Wood-Smoke-Polluted Urban Area. Journal of the Air and Waste Management Association 59: 1481–1488.

    Article  CAS  Google Scholar 

  • Sistema de Información Nacional de Calidad del Aire (SINCA). 2017. National Air Quality Information System of the Ministry of the Environment [Online]. Available: http://sinca.mma.gob.cl/ [Accessed November 2017].

  • Syphard, A.D., T.J. Brennan, and J.E. Keeley. 2014. The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire 23: 1165–1175.

    Article  Google Scholar 

  • Taylor, C., M.A. McCarthy, and D.B. Lindenmayer. 2014. Nonlinear Effects of Stand Age on Fire Severity. Conservation Letters 7: 355–370.

    Article  Google Scholar 

  • Úbeda, X., and P. Sarricolea. 2016. Wildfires in Chile: A review. Global and Planetary Change 146: 152–161.

    Article  Google Scholar 

  • Urrutia-Jalabert, R., M. Gonzalez, M. Gonzalez-Reyes, A. Lara, and R. Garreaud. 2018. Climate variability and forest fires in central and south-central Chile. Ecosphere 9: e02171. https://doi.org/10.1002/ecs2.2171.

    Article  Google Scholar 

  • van Wagner, C. E. 1987. Development and structure of the Canadian forest fire weather index system. Can. For. Serv., For. Tech. Rep., 35.

  • World Health Organization (WHO). 2013. Health risks of air pollution in EuropeHRAPIE project. Recommendations for concentration response functions for cost-benefit analysis of particular matter, ozone and nitrogen oxide. [Online]. Available: http://apps.who.int/iris/handle/10665/153692 [Accessed November 2017].

  • Zhao, Y., D. Feng, L. Yu, X. Wang, Y. Chen, Y. Bai, H.J. Hernández, M. Galleguillos, et al. 2016. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment 183: 170–185.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on a workshop led by AM-M, that Pia Osses and the Biogeography course 2017 helped organize. DMJSB and AM-M led the writing of the paper with input from all authors as follows: CAK finalized the figures; GJW and CAK undertook the FRP analysis; ROC and RR did the EVI anomalies and burn severity analysis and figures; AM and AG-R did the PDSI drought analysis and figures; JTA provided analysis of the fire climatology; FHJ, NB, LAC, and FDLB undertook the analysis of PM2.5 pollution and health impacts; FS evaluated the ecological impacts of the fires. This paper is the output of a symposium ‘Chile en Llamas’ held in May 2017 by Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Chile. The work was supported by the following grants: Dirección General de Vinculación con el Medio PUCV, Fondecyt Iniciación No. 1150422, and 11161061; Fondecyt Regular No.1150425 Centro de Ciencia del Clima y la Resiliencia (CR)2; Fondap No. 15110009; CONICYT PAI No. 82140001; Fondecyt Iniciación No. 11171041; and Australian Research Council Linkage Grant LP130100146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. J. S. Bowman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowman, D.M.J.S., Moreira-Muñoz, A., Kolden, C.A. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019). https://doi.org/10.1007/s13280-018-1084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-018-1084-1

Keywords

Navigation