Advertisement

Ambio

, Volume 47, Issue 8, pp 893–907 | Cite as

High-temporal resolution landscape changes related to anthropogenic activities over the past millennium in the Vosges Mountains (France)

  • Anne-Lise Mariet
  • Anne-Véronique Walter-Simonnet
  • Frédéric Gimbert
  • Christophe Cloquet
  • Carole Bégeot
Research Article
  • 42 Downloads

Abstract

Iron mining activities in the Bruche valley (Vosges Mountains, France) date historically from the Roman period to the mid-nineteenth century. The geochemical and palynological study of a core from the peat bog of Le Champ du Feu allows highlighting impacts of these activities over the past millennium. Trace metal contamination is recorded for lead (Pb), arsenic, zinc, and antimony during the Middle Ages, the sixteenth century, and from cal. ad 1750–1900, with several sources distinguished by Pb isotope analyses. Forest exploitation is attested by the palynological analysis of the core, with exploitation of Fagus for smelting processes and cutting of Abies for agro-pastoralism. This approach highlights several patterns of contamination, corresponding to the mixing sources and the contamination intensity, which can be linked to the pollen assemblage zones. Hence, anthropogenic activities such as mining and farming led to long-term modification of the landscape composition in this mountainous area.

Keywords

Lead isotopes Mines Peat bog Pollen Vegetation dynamics 

Notes

Acknowledgements

This work was supported by a grant from the French “Agence de l’Environnement et de la Maîtrise de l’Energie” (ADEME), the Conseil Régional de Franche-Comté, and by the European program Interreg V Rhin Supérieur Regio Mineralia. We thank the “Office National de la Forêt” of Shirmeck for their coring authorization and J.-L. Schreiner, J. Didier, and Q. Cuenot for their help during field and lab work. Thanks also go to D. Leypold for his historical data on the Bruche valley. We thank the reviewers for their comments which help to greatly improve the manuscript.

Supplementary material

13280_2018_1044_MOESM1_ESM.pdf (71 kb)
Fig. S1 (PDF 72 kb)

References

  1. Appleby, P.G., and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5: 1–8.  https://doi.org/10.1016/S0341-8162(78)80002-2.CrossRefGoogle Scholar
  2. Baron, S., M. Lavoie, A. Ploquin, J. Carignan, M. Pulido, and J.-L. de Beaulieu. 2005. Record of metal workshops in peat deposits: History and environmental impact on the Mont Lozère Massif, France. Environmental Science and Technology 39: 5131–5140.CrossRefGoogle Scholar
  3. Beug, H.-J. 1961. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (in German).Google Scholar
  4. Bindler, R., and J. Rydberg. 2015. Revisiting key sedimentary archives yields evidence of a rapid onset of mining in the mid-13th century at the Great Copper Mountain, Falun, Sweden: Mining at Great Copper Mountain, Falun, Sweden. Archaeometry 58: 642–658.  https://doi.org/10.1111/arcm.12192.CrossRefGoogle Scholar
  5. Birks, H.J.B., and J.M. Line. 1992. The use of rarefaction analysis for estimating palynological richness from quaternary pollen-analytical data. The Holocene 2: 1–10.  https://doi.org/10.1177/095968369200200101.CrossRefGoogle Scholar
  6. Blaauw, M. 2010. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512–518.  https://doi.org/10.1016/j.quageo.2010.01.002.CrossRefGoogle Scholar
  7. Breitenlechner, E., G. Goldenberg, J. Lutz, and K. Oeggl. 2013. The impact of prehistoric mining activities on the environment: a multidisciplinary study at the fen Schwarzenbergmoos (Brixlegg, Tyrol, Austria). Vegetation History and Archaeobotany 22: 351–366.  https://doi.org/10.1007/s00334-012-0379-6.CrossRefGoogle Scholar
  8. Carignan, J., P. Hild, and G. Mevelle. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials. Geostandards Newsletter 25: 187–198.CrossRefGoogle Scholar
  9. Cloquet, C., J. Carignan, and G. Libourel. 2006. Atmospheric pollutant dispersion around an urban area using trace metal concentrations and Pb isotopic compositions in epiphytic lichens. Atmospheric Environment 40: 574–587.  https://doi.org/10.1016/j.atmosenv.2005.09.073.CrossRefGoogle Scholar
  10. Cloquet, C., N. Estrade, and J. Carignan. 2015. Ten years of elemental atmospheric metal fallout and Pb isotopic composition monitoring using lichens in northeastern France. Comptes Rendus Geoscience 347: 257–266.  https://doi.org/10.1016/j.crte.2015.04.003.CrossRefGoogle Scholar
  11. de Klerk, P. 2014. Palynological research of the Vosges Mountains (NE France): A historical overview. Carolinea 72: 15–39.Google Scholar
  12. De Muynck, D., C. Cloquet, E. Smits, F.A. de Wolff, G. Quitté, L. Moens, and F. Vanhaecke. 2007. Lead isotopic analysis of infant bone tissue dating from the Roman era via multicollector ICP–mass spectrometry. Analytical and Bioanalytical Chemistry 390: 477–486.  https://doi.org/10.1007/s00216-007-1679-z.CrossRefGoogle Scholar
  13. Ejarque, A., R. Julià, S. Riera, J.M. Palet, H.A. Orengo, Y. Miras, and C. Gascón. 2009. Tracing the history of highland human management in the eastern Pre-Pyrenees: an interdisciplinary palaeoenvironmental study at the Pradell fen, Spain. The Holocene 19: 1241–1255.  https://doi.org/10.1177/0959683609345084.CrossRefGoogle Scholar
  14. Faegri, K., and J. Iversen. 1989. Textbook of pollen analysis. IV edition by K. Faegri, PE Kaland & K. Chichester: Krzywinski. Wiley.Google Scholar
  15. Fluck, P. 2000. Sainte-Marie-aux-Mines ou Les mines du rêve. Une monographie des mines d’argent. Soultz: Les Editions du Patrimoine Minier (in French).Google Scholar
  16. Fluck, P., and B. Ancel. 1989. Le paysage minier des sites métalliques des Vosges et de la Forêt-Noire. Annales de Bretagne et des Pays de l’Ouest 96: 183–201.  https://doi.org/10.3406/abpo.1989.3323 (in French).CrossRefGoogle Scholar
  17. Forel, B., F. Monna, C. Petit, O. Bruguier, R. Losno, P. Fluck, C. Begeot, H. Richard, et al. 2010. Historical mining and smelting in the Vosges Mountains (France) recorded in two ombrotrophic peat bogs. Journal of Geochemical Exploration 107: 9–20.  https://doi.org/10.1016/j.gexplo.2010.05.004.CrossRefGoogle Scholar
  18. Garnier, E. 2000. Les forêts vosgiennes à l’épreuve des tempêtes sous l’Ancien Régime (XVIIe et XVIIIe siècles). Revue Géographique de l’Est 40 (in French).Google Scholar
  19. Grimm, E.C. 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13–35.  https://doi.org/10.1016/0098-3004(87)90022-7.CrossRefGoogle Scholar
  20. Grimm, E.C. 1991. TILIA and TILIA*GRAPH.Google Scholar
  21. Heiri, O., A.F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.  https://doi.org/10.1023/A:1008119611481.CrossRefGoogle Scholar
  22. Jouffroy-Bapicot, I., M. Pulido, S. Baron, D. Galop, F. Monna, M. Lavoie, A. Ploquin, C. Petit, et al. 2007. Environmental impact of early palaeometallurgy: Pollen and geochemical analysis. Vegetation History and Archaeobotany 16: 251–258.  https://doi.org/10.1007/s00334-006-0039-9.CrossRefGoogle Scholar
  23. Kalis, A.J. 1984a. Forêt de la Bresse, (Vogezen), vegetatiekundige en pollenanalytische onderzœkingen naar de bosgeschiedenis van een centraal-europees middelgebergte.Google Scholar
  24. Kalis, A.J. 1984b. Un miroir éloigné : les défrichements anthropogènes dans les zones de basse altitude, réfléchis dans des diagrammes polliniques montagnards. CNRS Centre de Recherches Archéologiques NOTES Monographiques Techniques N°17 (in French).Google Scholar
  25. Karlsson, J., J. Rydberg, U. Segerström, E.-V. Nordström, P. Thöle, H. Biester, and R. Bindler. 2016. Tracing a bog-iron bloomery furnace in an adjacent lake-sediment record in Ängersjö, central Sweden, using pollen and geochemical signals. Vegetation History and Archaeobotany 25: 569–581.  https://doi.org/10.1007/s00334-016-0567-x.CrossRefGoogle Scholar
  26. Karlsson, J., U. Segerström, A. Berg, N. Mattielli, and R. Bindler. 2015. Tracing modern environmental conditions to their roots in early mining, metallurgy, and settlement in Gladhammar, southeast Sweden: Vegetation and pollution history outside the traditional Bergslagen mining region. The Holocene 25: 944–955.  https://doi.org/10.1177/0959683615574586.CrossRefGoogle Scholar
  27. Kreiser, A.M., N.J. Anderson, P.G. Appleby, R.W. Battarbee, S.T. Patrick, B. Rippey, and N.L. Rose. 1992. A paleolimnological study of water quality of lakes in Vosges Mountains of France. Report to the University of Bordeaux by ENSIS Ltd, London.Google Scholar
  28. Leypold, D. 1996. La métallurgie du fer dans le massif vosgien. La vallée de la Bruche de l’antiquité au XIXe siècle. Collection “Recherches et documents.” Société Savante d’Alsace (in French).Google Scholar
  29. Manhès, G., C.J. Allègre, B. Dupré, and B. Hamelin. 1980. Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the Earth and primitive mantle characteristics. Earth and Planetary Science Letters 47: 370–382.CrossRefGoogle Scholar
  30. Marcoux, E. 1987. Isotopes du plomb et paragenèses métalliques. Traceurs de l’histoire des gîtes minéraux. Document du BRGM, No. 117 (in French).Google Scholar
  31. Mariet, A.-L., C. Bégeot, F. Gimbert, J. Gauthier, P. Fluck, and A.-V. Walter-Simonnet. 2016. Past mining activities in the Vosges Mountains (eastern France): Impact on vegetation and metal contamination over the past millennium. The Holocene 26: 1225–1236.  https://doi.org/10.1177/0959683616638419.CrossRefGoogle Scholar
  32. Mighall, T., S. Timberlake, A. Martínez-Cortizas, N. Silva-Sánchez, and I.D.L. Foster. 2017. Did prehistoric and Roman mining and metallurgy have a significant impact on vegetation? Journal of Archaeological Science 11: 613–625.CrossRefGoogle Scholar
  33. Monna, F., J. Lancelot, I.W. Croudace, A.B. Cundy, and J.T. Lewis. 1997. Pb isotopic composition of airborne particulate material from France and the southern United Kingdom: Implications for Pb pollution sources in urban areas. Environmental Science and Technology 31: 2277–2286.CrossRefGoogle Scholar
  34. Moore, P.D., J.A. Webb, and M.E. Collinson. 1991. Pollen analysis, 2nd ed. Oxford: Blackwell.Google Scholar
  35. Nölken, W. 2005. Holzkohleanalytische Untersuchungen zur Waldgeschichte der Vogesen. Dissertation zur Erlangung der Doktorwürde der Fakultät für Biologie der Albert-Ludwigs-Universität Freiburg i. Br (in German).Google Scholar
  36. Nriagu, J.O. 1996. History of global metal pollution. Science 272: 223.CrossRefGoogle Scholar
  37. Oksanen, J., G. Blanchet, R. Kindt, P. Legendre, R. O’Hara, G. Simpson, P. Solymos, H. Stevens, et al. 2012. Vegan: Community ecology package. R package version 1.17-11.Google Scholar
  38. Punt, W. 1976. Northwest European pollen flora, vol. I. Amsterdam: Elsevier.Google Scholar
  39. Punt, W., S. Blackmore, and G.C.S. Clarke. 1988. Northwest European pollen flora, vol. V. Amsterdam: Elsevier.Google Scholar
  40. Punt, W., and G.C.S. Clarke. 1980. Northwest European pollen flora, vol. II. Amsterdam: Elsevier.Google Scholar
  41. Punt, W., and G.C.S. Clarke. 1981. Northwest European pollen flora, vol. III. Amsterdam: Elsevier.Google Scholar
  42. Punt, W., and G.C.S. Clarke. 1984. Northwest European pollen flora, vol. IV. Amsterdam: Elsevier.Google Scholar
  43. R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org.
  44. Reille, M. 1992. Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et palynologie, URA CNRS 1152.Google Scholar
  45. Reille, M. 1995. Pollen et spores d’Europe et d’Afrique du Nord: supplément 1. Marseille: Laboratoire de Botanique Historique et Palynologie.Google Scholar
  46. Renberg, I., R. Bindler, and M.-L. Brännvall. 2001. Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. The Holocene 11: 511–516.  https://doi.org/10.1191/095968301680223468.CrossRefGoogle Scholar
  47. Servera Vives, G., Y. Miras, S. Riera, R. Julià, P. Allée, H. Orengo, S. Paradis-Grenouillet, and J. Maria Palet. 2014. Tracing the land use history and vegetation dynamics in the Mont Lozère (Massif Central, France) during the last 2000 years: The interdisciplinary study case of Countrasts peat bog. Quaternary International 353: 123–139.CrossRefGoogle Scholar
  48. Sudhaus, D., and A. Friedmann. 2015. Holocene vegetation and land use history in the northern Vosges (France). Quaternary Science Journal 64: 55–66.Google Scholar
  49. Thirlwall, M.F. 2002. Multicollector ICP-MS analysis of Pb isotopes using a 207pb-204pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chemical Geology 184: 255–279.  https://doi.org/10.1016/S0009-2541(01)00365-5.CrossRefGoogle Scholar
  50. Viehweider, B., J. Lutz, and K. Oeggl. 2015. Late-Holocene land use changes caused by exploitation in the mining region of Kitzbühel (Tyrol, Austria). Vegetation History and Archaeobotany 24: 711–729.  https://doi.org/10.1007/s00334-015-0527-x.CrossRefGoogle Scholar
  51. von Eller, J.P., J.G. Blanalt, and P. Ham. 1970. Carte et notice géologiques de la France à 1/50 000, n°307 Sélestat. Edition du BRGM (in French).Google Scholar
  52. Wedepohl, K.H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59: 1217–1232.  https://doi.org/10.1016/0016-7037(95)00038-2.CrossRefGoogle Scholar
  53. Weiss, D., W. Shotyk, P.G. Appleby, J.D. Kramers, and A.K. Cheburkin. 1999. Atmospheric Pb deposition since the industrial revolution recorded by five swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and sources. Environmental Science and Technology 33: 1340–1352.  https://doi.org/10.1021/es980882q.CrossRefGoogle Scholar
  54. White, W.M., F. Albarède, and P. Télouk. 2000. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology 167: 257–270.  https://doi.org/10.1016/S0009-2541(99)00182-5.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Chrono-EnvironmentUniversity of Bourgogne Franche-Comté, UMR UFC/CNRS 6249 USC INRABesançon CedexFrance
  2. 2.CRPG-CNRSVandoeuvre les NancyFrance

Personalised recommendations