Ambio

, Volume 46, Issue 5, pp 554–565 | Cite as

Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance

  • Justin Rhodes
  • Harald Hetzenauer
  • Marieke A. Frassl
  • Karl-Otto Rothhaupt
  • Karsten Rinke
Report

Abstract

This study investigates over 30 years of dissolved oxygen dynamics in the deep interior of Lake Constance (max. depth: 250 m). This lake supplies approximately four million people with drinking water and has undergone strong re-oligotrophication over the past decades. We calculated depth-specific annual oxygen depletion rates (ODRs) during the period of stratification and found that 50% of the observed variability in ODR was already explained by a simple separation into a sediment- and volume-related oxygen consumption. Adding a linear factor for water depth further improved the model indicating that oxygen depletion increased substantially along the depth. Two other factors turned out to significantly influence ODR: total phosphorus as a proxy for the lake’s trophic state and mean oxygen concentration in the respective depth layer. Our analysis points to the importance of nutrient reductions as effective management measures to improve and protect the oxygen status of such large and deep lakes.

Keywords

Anoxia Lake management Statistical modeling Water quality 

Notes

Acknowledgements

We would like to thank the IGKB (Internationale Gewässerschutzkomission für den Bodensee) and the ISF (Institut für Seenforschung, Langenargen, Germany) for provision of the comprehensive dataset. Sincere thanks are given to two anonymous reviewers, which significantly improved an earlier version of the manuscript. We thank the DFG (Deutsche Forschungsgemeinschaft, Grant Ri 2040/1-1) and the IMPRS (International Max Planck Research School) for Organismal Biology as well as the Zukunftskolleg at the University of Konstanz for financial support.

References

  1. Ambrosetti, W., and L. Barbanti. 2005. Evolution towards meromixis of Lake Iseo (Northern Italy) as revealed by its stability trend. Journal of Limnology 64: 1–11.CrossRefGoogle Scholar
  2. Benndorf, J. 1968. Untersuchungen über die Remineralisierung des Phosphors in der Freiwasserregion der Saidenbachtalsperre. Internationale Revue der Gesamten Hydrobiologie 53: 635–650.CrossRefGoogle Scholar
  3. Boehrer, B. 2000. Modal response of a deep stratified lake: Western Lake Constance. Journal of Geophysical Research: Oceans 105: 28837–28845.CrossRefGoogle Scholar
  4. Boehrer, B., and M. Schultze. 2008. Stratification of lakes. Reviews of Geophysics 46: RG2005.CrossRefGoogle Scholar
  5. Bryant, L.D., H. Hsu-Kim, P.A. Gantzer, and J.C. Little. 2011. Solving the problem at the source: Controlling Mn release at the sediment-water interface via hypolimnetic oxygenation. Water Research 45: 6381–6392.CrossRefGoogle Scholar
  6. Bryant, L.D., C. Lorrai, D.F. McGinnis, A. Brand, A. Wuest, and J.C. Little. 2010. Variable sediment oxygen uptake in response to dynamic forcing. Limnology and Oceanography 55: 950–964.CrossRefGoogle Scholar
  7. Byun, D., Y. Cho, I. Huh, and D.E. Hart. 2005. Runoff-induced vertical thermal dynamics in a canyon-shaped reservoir during the summer monsoon. Marine & Freshwater Research 56: 959–968.CrossRefGoogle Scholar
  8. Carstensen, J., D.J. Conley, E. Bonsdorff, B.G. Gustafsson, S. Hietanen, U. Janas, T. Jilbert, A. Maximov, et al. 2014. Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic Fauna, and Management. Ambio 43: 26–36. doi: 10.1007/s13280-013-0474-7.CrossRefGoogle Scholar
  9. Cornett, R., and F. Rigler. 1980. The areal hypolimnetic oxygen deficit: An empirical test of the model. Limnology and Oceanography 25: 672–679.CrossRefGoogle Scholar
  10. Cornett, R.J. 1989. Predicting changes in hypolimnetic oxygen concentrations with phosphorus retention, temperature, and morphometry. Limnology and Oceanography 34: 1359–1366.CrossRefGoogle Scholar
  11. Cornett, R.J., and F.H. Rigler. 1979. Hypolinimetic oxygen deficits: Their prediction and interpretation. Science 205: 580–581.CrossRefGoogle Scholar
  12. Cornett, R.J., and F.H. Rigler. 1984. Dependence of hypolimnetic oxygen consumption on ambient oxygen concentration: Fact or artifact? Water Resources Research 20: 823–830.CrossRefGoogle Scholar
  13. Crawley, M.J. 2013. The R book. Chichester: Wiley.Google Scholar
  14. Danis, P.A., U. von Grafenstein, V. Masson-Delmotte, S. Planton, D. Gerdeaux, and J.M. Moisselin. 2004. Vulnerability of two European lakes in response to future climatic changes. Geophysical Research Letters 31: L21507.CrossRefGoogle Scholar
  15. Davison, W., C. Woof, and E. Rigg. 1982. The dynamics of iron and manganese in a seasonally anoxic lake; direct measurement of fluxes using sediment traps. Limnology and Oceanography 27: 987–1003.CrossRefGoogle Scholar
  16. Einsele, W. 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Archiv für Hydrobiologie 29: 664–686.Google Scholar
  17. Fink, G., M. Wessels, and A. Wüest. 2016. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes? Journal of Hydrology 540: 457–468.CrossRefGoogle Scholar
  18. Frevert, T. 1980. Dissolved oxygen dependent phosphorus release from profundal sediments of Lake Constance (Obersee). Hydrobiologia 74: 17–28.CrossRefGoogle Scholar
  19. Hagenmaier, H.E. 1974. The hatching process in fish embryos. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 175: 157–162.CrossRefGoogle Scholar
  20. Heinz, G., J. Ilmberger, and M. Schimmele. 1990. Vertical mixing in Überlinger See, western part of Lake Constance. Aquatic Sciences 52: 256–268.CrossRefGoogle Scholar
  21. Heip C.H.R., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg, and K. Soetaert. 1995. Production and consumption of biological particles in temperate tidal estuaries. In Oceanography and marine biology: An annual review 33, ed. A.D. Ansell, R.N. Gibson, and M. Barnes M 1-149. London: University College London Press.Google Scholar
  22. Hupfer, M., and S. Hilt. 2008. Lake Restoration. In Encyclopedia of ecology, ed. S.E. Jørgensen, and B.D. Fath, 2080–2093. Oxford: Elsevier.CrossRefGoogle Scholar
  23. Hupfer, M., and J. Lewandowski. 2008. Oxygen controls the phosphorus release from lake sediments: A long-lasting paradigm in limnology. International Review of Hydrobiology 93: 415–432.CrossRefGoogle Scholar
  24. Hutchinson, G.E. 1938. On the relation between the oxygen deficit and the productivity and typology of lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 36: 336–355.CrossRefGoogle Scholar
  25. Jørgensen, B.B., and N.P. Revsbech. 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography 30: 111–122.CrossRefGoogle Scholar
  26. Kemp, W.M., P.A. Sampou, J. Garber, J. Tuttle, and W.R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series 85: 137–152.CrossRefGoogle Scholar
  27. Kleinman, P.J.A., A.N. Sharpley, P.J.A. Withers, L. Bergström, L.T. Johnson, and D.G. Doody. 2015. Implementing agricultural phosphorus science and management to combat eutrophication. Ambio 44: 297–310. doi: 10.1007/s13280-015-0631-2.CrossRefGoogle Scholar
  28. KLIWA. 2007. Zum Einfluss des Klimas auf den Bodensee. KLIWA-Projekt A2.2.1. 11, LUBW Landesanstalt für Umwelt, Messungen und Naturschutz, Baden-Württemberg.Google Scholar
  29. Livingstone, D.M. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.CrossRefGoogle Scholar
  30. Livingstone, D.M., and D.M. Imboden. 1996. The prediction of hypolimnetic oxygen profiles: A plea for a deductive approach. Canadian Journal of Fisheries and Aquatic Sciences 53: 924–932.CrossRefGoogle Scholar
  31. Lorke, A., B. Müller, M. Maerki, and A. Wüest. 2003. Breathing sediments: The control of diffusive transport across the sediment-water interface by periodic boundary-layer turbulence. Limnology and Oceanography 48: 2077–2085.CrossRefGoogle Scholar
  32. Matzinger, A., B. Müller, P. Niederhauser, M. Schmid, and A. Wüest. 2010. Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnology and Oceanography 55: 2073–2084.CrossRefGoogle Scholar
  33. Molot, L.A., P.J. Dillon, B.J. Clark, and B.P. Neary. 1992. Predicting end-of-summer oxygen profiles in stratified lakes. Canadian Journal of Fisheries and Aquatic Sciences 49: 2363–2372.CrossRefGoogle Scholar
  34. Mortimer, C.H. 1942. The exchange of dissolved substances between mud and water in lakes. Journal of Ecology 30: 147–201.CrossRefGoogle Scholar
  35. Müller, B., L.D. Bryant, A. Matzinger, and A. Wüest. 2012. Hypolimnetic oxygen depletion in eutrophic lakes. Environmental Science and Technology 46: 9964–9971.Google Scholar
  36. Müller, B., and R. Gächter. 2012. Increasing chloride concentrations in Lake Constance: Characterization of sources and estimation of loads. Aquatic Sciences 74: 101–112.CrossRefGoogle Scholar
  37. North, R.P., R.L. North, D.M. Livingstone, O. Köster, and R. Kipfer. 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: Consequences of a climate regime shift. Global Change Biology 20: 811–823.CrossRefGoogle Scholar
  38. Nürnberg, G.K. 1995. Quantifying anoxia in lakes. Limnology and Oceanography 40: 1100–1111.CrossRefGoogle Scholar
  39. R Development Core Team. 2010. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  40. Rinke, K., A.M.R. Huber, S. Kempke, M. Eder, T. Wolf, W.N. Probst, and K.O. Rothhaupt. 2009. Lake-wide distributions of temperature, phytoplankton, zooplankton and fish in the pelagic zone of a large lake. Limnology and Oceanography 54: 235–248.CrossRefGoogle Scholar
  41. Rinke, K., P. Yeates, and K.O. Rothhaupt. 2010. A simulation study on the feedback of phytoplankton on thermal structure via light extinction. Freshwater Biology 55: 1674–1693.Google Scholar
  42. Rippey, B., and C. McSorley. 2009. Oxygen depletion in lake hypolimnia. Limnology and Oceanography 54: 905–916.CrossRefGoogle Scholar
  43. Rosenberg, R., M. Magnusson, and A. Stigebrandt. 2016. Rapid re-oxygenation of Baltic Sea sediments following a large inflow event. Ambio 45: 130–132. doi: 10.1007/s13280-015-0736-7.CrossRefGoogle Scholar
  44. Roßknecht, H. 1998. Langjährige Entwicklung chemischer Parameter im Bodensee-Obersee. 48, Internationale Gewässerschutzkommission für den Bodensee, Langenargen.Google Scholar
  45. Schoumans, O.F., F. Bouraoui, C. Kabbe, O. Oenema, and K.C. van Dijk. 2015. Phosphorus management in Europe in a changing world. Ambio 44: 180–192. doi: 10.1007/s13280-014-0613-9.CrossRefGoogle Scholar
  46. Srivastava, A.K., and S.J. Agrawal. 1983. Changes induced by manganese in fish testis. Cellular and Molecular Life Sciences 39: 1309–1310.CrossRefGoogle Scholar
  47. Straile, D., O. Kerimoglu, F. Peeters, M. Jochimsen, R. Kümmerlin, K. Rinke, and K. Rothhaupt. 2010. Effects of a half a millennium winter on a deep lake: A shape of things to come? Global Change Biology 16: 2844–2856.CrossRefGoogle Scholar
  48. Uhlmann, D., L. Paul, M. Hupfer, and R. Fischer. 2011. Lakes and reservoirs. In Treatise on water science, Vol. 2: The science of hydrology, ed. P. Wilderer, 157–213. Amsterdam: Elsevier.CrossRefGoogle Scholar
  49. Wagner, G., and H.J. Kruse. 1995. Analysis of the near-bottom oxygen minimum in upper Lake Constance via statistical approach. Limnologica 25: 11–20.Google Scholar
  50. Wendt-Potthoff, K., C. Kloß, M. Schultze, and M. Koschorreck. 2014. Anaerobic metabolism of two hydro-morphological similar pre-dams under contrasting nutrient loading (Rappbode Reservoir System, Germany). International Review of Hydrobiology 99: 350–362.CrossRefGoogle Scholar
  51. Wetzel, R.G. 2001. Limnology: Lake and river ecosystems. San Diego, CA: Academic Press.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2017

Authors and Affiliations

  1. 1.Limnological InstituteUniversity of KonstanzConstanceGermany
  2. 2.Institut für SeenforschungLUBW, Landesanstalt für Umwelt, Messungen und Naturschutz Baden-WürttembergLangenargenGermany
  3. 3.Department of Lake ResearchHelmholtz-Centre for Environmental Research - UFZMagdeburgGermany
  4. 4.RavensburgGermany

Personalised recommendations