Ambio

, Volume 46, Issue 1, pp 109–120 | Cite as

Microchemical contaminants as forming agents of anthropogenic soils

Review

Abstract

Within historically accepted, major soil-forming major processes, the role of chemicals as a human-induced factor was neglected until the middle of the last century. Over the years, however, anthropogenic chemicals have emerged and are being released on the land surface in large amounts. Irreversible changes in the matrix of soil and soil constituents may occur as a result of both intentional and accidental release of anthropogenic chemicals, as well as a byproduct of human activity. After presenting an historical evolution of the discussion on soil-forming factors, we focus here on human impacts and examine the abiotic role of anthropogenic microchemical contaminant (AMCC) interactions with soils at the molecular level. Selected examples of microchemical contaminants, including heavy metals, pesticides, hydrocarbons, and engineered nanomaterials, are presented to demonstrate that AMCCs—even at low concentration—may irreversibly alter the matrix of the soil and soil constituents and lead to the formation of anthropogenic soils with different properties than those of the pristine soils.

Keywords

Engineered nanomaterials Heavy metals Organic contaminants Soil constituents and properties Soil formation factors 

Notes

Acknowledgments

Financial support from the Israel Water Authority (Grant No. 4500687211) is gratefully acknowledged.

References

  1. Adams, R.H., F.J. Guzmán Osorio, and J. Zavala Cruz. 2008. Water repellency in oil contaminated sandy and clayey soils. Environmental Science and Technology 5: 445–454. doi: 10.1007/BF03326040.Google Scholar
  2. Amundson, R., and H. Jenny. 1991. The place of humans in the state factor theory of ecosystems and their soils. Soil Science 151: 99–109. doi: 10.1097/00010694-199101000-00012.CrossRefGoogle Scholar
  3. Arab, D., and P. Pourafshary. 2013. Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids and Surfaces A 436: 803–814. doi: 10.1016/j.colsurfa.2013.08.022.CrossRefGoogle Scholar
  4. Avanasi, R., W.A. Jackson, B. Sherwin, J.F. Mudge, and T.D. Anderson. 2014. C60 fullerene soil sorption, biodegradation and plant uptake. Environmental Science and Technology 48: 2792–2797.CrossRefGoogle Scholar
  5. Barnhisel, R.I., and P.M. Bertsch. 1989. Chlorites and hydroxy interlayered vermiculite and smectite. In Minerals in Soil Environments, 2nd ed, ed. J.B. Dixon, and S.B. Weed, 729–788. Madison, WI: Soil Science Society of America.Google Scholar
  6. Barriuso, E., P. Benoit, and I.G. Dubus. 2008. Formation of pesticide nonextractable (bound) residues in soil: magnitude, controlling factors and reversibility. Environmental Science and Technology 42: 1845–1854. doi: 10.1021/es7021736.CrossRefGoogle Scholar
  7. Bayard, R., L. Barna, B. Mahjoub, and R. Gourdon. 2000. Influence of the presence of PAHs and coal tar on naphthalene sorption in soils. Journal of Contaminant Hydrology 46: 61–80.CrossRefGoogle Scholar
  8. Ben-Moshe, T., S. Frenk, I. Dror, D. Minz, and B. Berkowitz. 2013. Effects of metal oxide nanoparticles on soil properties. Chemosphere 90: 640–646. doi: 10.1016/j.chemosphere.2012.09.018.CrossRefGoogle Scholar
  9. Bergaya, F., and G. Lagaly. 2001. Surface modification of clay minerals. Applied Clay Science 19: 1–3. doi: 10.1016/S0169-1317(01)00063-1.CrossRefGoogle Scholar
  10. Berkowitz, B., I. Dror, and B. Yaron. 2014. Contaminant geochemistry. Berlin: Springer.CrossRefGoogle Scholar
  11. Bertsch, P.M., and D.B. Hunter. 1998. Elucidating fundamental mechanisms in soil and environmental chemistry: the role of advanced analytical, spectroscopic, and microscopic methods. Future Prospects for Soil Chemistry 55: 103–122. doi: 10.2136/sssaspecpub55.c5.Google Scholar
  12. Bosetto, M., P. Arfaioli, and P. Fusi. 1993. Interactions of alachlor with homoionic montmorillonites. Soil Science 155: 105–113. doi: 10.1097/00010694-199302000-00004.CrossRefGoogle Scholar
  13. Brady, N.C., and R.R. Weil. 2007. The nature and properties of soils, 14th ed. New York: Pearson.Google Scholar
  14. Bradl, H.B. 2004. Adsorption of heavy metals ions on soils and soil constituents. Colloid and Interface Science 277: 1–17.CrossRefGoogle Scholar
  15. Capra, G.F., A. Ganga, E. Grilli, S. Vacca, and A. Buondonno. 2015. A review on anthropogenic soils from a worldwide perspective. Soils and Sediments 15: 1602–1618. doi: 10.1007/s11368-015-1110-x.CrossRefGoogle Scholar
  16. Cavallaro, N., and M.B. McBride. 1984. Zinc and Copper sorption and fixation by an acid soil clay: Effect of selective dissolutions. Soil Science Society of America Journal 48: 1050–1054. doi: 10.2136/sssaj1984.03615995004800050020x.CrossRefGoogle Scholar
  17. Certini, G. 2014. Fire as soil forming factor. Ambio 43: 191–195.CrossRefGoogle Scholar
  18. Certini, G., and R. Scalenghe. 2011. Anthropogenic soils are the golden spike for the Anthropocene. The Holocene 8: 1269–1274. doi: 10.1177/0959683611408454.CrossRefGoogle Scholar
  19. Certini, G., R. Scalenghe, and W. Woods. 2013. The impact of warfare on the soil environment. Earth Science Reviews 127: 1–15.CrossRefGoogle Scholar
  20. Chefetz, B., A.P. Deshmukh, P.G. Hatcher, and E.A. Guthrie. 2000. Pyrene sorption by natural organic matter. Environmental Science and Technology 34: 2925–2930. doi: 10.1021/es9912877.CrossRefGoogle Scholar
  21. Chefetz, B., and B. Xing. 2009. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: A review. Environmental Science and Technology 43: 1680–1688. doi: 10.1021/es803149u.CrossRefGoogle Scholar
  22. Cheng, X., A.T. Kan, and M.B. Tomson. 2005. Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport. Materials Research 20: 3244–3254. doi: 10.1557/jmr.2005.0402.CrossRefGoogle Scholar
  23. Christl, I., C.J. Milne, D.G. Kinniburgh, and R. Kretzschmar. 2001. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environmental Science and Technology 35: 2512–2517. doi: 10.1021/es0002520.CrossRefGoogle Scholar
  24. Cornelis, G., K. Hund-Rinke, T. Kuhlbusch, N. van den Brink, and C. Nickel. 2014. Fate and bioavailability of engineered nanoparticles in soils: a review. Critical Reviews in Environmental Science and Technology 44: 2720–2764. doi: 10.1080/10643389.2013.829767.CrossRefGoogle Scholar
  25. Darwin, C. 1881. The formation of vegetable mold through the actions of worms, with observations on their habits. London: John Murray.CrossRefGoogle Scholar
  26. Dokuchaev, V.V. 1883. Russian chernozen. In Selected works of VV Dokuchaev 1 1948 (English trans: Jerusalem Dokuchaev VV (1883) Russian Chernozem). Jerusalem: Israel Program for Scientific Translation.Google Scholar
  27. Dokuchaev, V.V. 1899. A contribution to the theory of natural zones: Horizontal and vertical soil zones. St. Petersburg: Mayor’s Office Press (in Russian).Google Scholar
  28. Dror, I., B. Yaron, and B. Berkowitz. 2015. Abiotic soil changes induced by engineered nanomaterials: A critical review. Journal of Contaminant Hydrology 181: 3–16. doi: 10.1016/j.jconhyd.2015.04.004.CrossRefGoogle Scholar
  29. Dudal, R. 2005. The sixth factor of soil formation. Eurasian Soil Science 38: S60–S65.Google Scholar
  30. Fortner, J.D., C. Solenthaler, J.B. Hughes, A.M. Puzrin, and M. Plötze. 2012. Interactions of clay minerals and a layered double hydroxide with water stable, nano scale fullerene aggregates (nC60). Applied Clay Science 55: 36–43. doi: 10.1016/j.clay.2011.09.014.CrossRefGoogle Scholar
  31. Gevao, B., K.T. Semple, and K.C. Jones. 2000. Bound pesticide residues in soils: A review. Environmental Pollution 108: 3–14. doi: 10.1016/S0269-7491(99)00197-9.CrossRefGoogle Scholar
  32. Ge, X., Y. Zhou, C. Lü, and H. Tang. 2006. AFM study on the adsorption and aggregation behavior of dissolved humic substances on mica. Science in China, Series B: Chemistry 49: 256–266. doi: 10.1007/s11426-006-0256-1.CrossRefGoogle Scholar
  33. Gil-Díaz, M., A. Pérez-Sanz, M. Ángeles Vicente, and M. Carmen Lobo. 2014. Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties: Metal soil immobilisation using zero-valent iron nanoparticles. Clean: Soil, Air, Water 42: 1776–1784. doi: 10.1002/clen.201300730.Google Scholar
  34. Gournis, D., V. Georgakilas, M.A. Karakassides, T. Bakas, K. Kordatos, M. Prato, M. Fanti, and F. Zerbetto. 2004. Incorporation of fullerene derivatives into smectite clays: A new family of organic–inorganic nanocomposites. Journal of the American Chemical Society 126: 8561–8568. doi: 10.1021/ja049237b.CrossRefGoogle Scholar
  35. Hass, A., U. Mingelgrin, and P. Fine. 2010. Heavy metals in soils irrigated with wastewater. In Treated wastewater in agriculture, ed. G.J. Levy, P. Fine, and A. Bar-Tal, 247–285. Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  36. Hilgard, E.W. 1906. Soils: Their formation, properties, composition and relation to climate and plant growth in humid and arid regions. New York: Macmillan.Google Scholar
  37. Inbar, A., M. Ben-Hur, M. Sternberg, and M. Lado. 2015. Using polyacrylamide to mitigate post-fire soil erosion. Geoderma 239–240: 107–114.CrossRefGoogle Scholar
  38. Jacquat, O., A. Voegelin, and R. Kretzschmar. 2009. Local coordination of Zn in hydroxy-interlayered minerals and implications for Zn retention in soils. Geochimica et Cosmochimica Acta 73: 348–363. doi: 10.1016/j.gca.2008.10.026.CrossRefGoogle Scholar
  39. Jenny, H. 1941. Factors of soil formation. New York: McGraw-Hill NY.Google Scholar
  40. Jenny, H. 1961. Derivation of state factor equations of soils and ecosystems. Soil Science Society of America Journal 25: 385. doi: 10.2136/sssaj1961.03615995002500050023x.CrossRefGoogle Scholar
  41. Johnson, D.L., and R.J. Schaetzl. 2015. Differing views of soil and pedogenesis by two masters: Darwin and Dokuchaev. Geoderma 237–238: 176–189. doi: 10.1016/j.geoderma.2014.08.020.CrossRefGoogle Scholar
  42. Jozja, N., P. Baillif, J.C. Touray, F. Muller, and C. Clinard. 2006. Incidence of lead uptake on the microstructure of a (Mg, Ca)-bearing bentonite (Prrenjas, Albania). European Journal of Mineralogy 18: 361–368. doi: 10.1127/0935-1221/2006/0018-0361.CrossRefGoogle Scholar
  43. Kang, S., and B. Xing. 2005. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science and Technology 39: 134–140.CrossRefGoogle Scholar
  44. Kelepertzis, E. 2014. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 221–222: 82–90.CrossRefGoogle Scholar
  45. Klavins, M., and L. Ansone. 2010. Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering 17: 351–362.Google Scholar
  46. Lagaly, G. 1986. Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22: 43–51. doi: 10.1016/0167-2738(86)90057-3.CrossRefGoogle Scholar
  47. Lieber, C.M., and C.C. Chen. 2009. Preparation of fullerene and fullerene based metalics. Advances in Solid State Physics 48: 109–147.Google Scholar
  48. Lishtvan, I.I., F.N. Kaputsky, Y.G. Yanuta, A.M. Abramets, V.P. Strigutsky, and E.V. Kachanova. 2006. Humic acids: Interaction with metal ions, features of structure and properties of metal humic complexes. Chemistry for Sustainable Development 14: 367–373.Google Scholar
  49. López-Periago, J.E., M. Arias-Estévez, J.C. Nóvoa-Muñoz, D. Fernández-Calviño, B. Soto, C. Pèrez-Novo, and J. Simal-Gándara. 2008. Copper retention kinetics in acid soils. Soil Science Society of America Journal 72: 63–72. doi: 10.2136/sssaj2006.0079.CrossRefGoogle Scholar
  50. Mainwaring, K.A., C.P. Morley, S.H. Doerr, P. Douglas, C.T. Llewellyn, G. Llewellyn, I. Matthews, and B.K. Stein. 2004. Role of heavy polar organic compounds for water repellency of sandy soils. Environmental Chemistry Letters 2: 35–39. doi: 10.1007/s10311-004-0064-9.CrossRefGoogle Scholar
  51. Mamy, L., and E. Barriuso. 2007. Desorption and time-dependent sorption of herbicides in soils. European Journal of Soil Science 58: 174–187. doi: 10.1111/j.1365-2389.2006.00822.x.CrossRefGoogle Scholar
  52. McBride, M.B. 1989. Reactions controlling heavy metal solubility in soils. In Advances in soil science, ed. B.A. Stewart, 1–56. New York: Springer.CrossRefGoogle Scholar
  53. Mehrotra, V., E.P. Giannelis, R.F. Ziolo, and P. Rogalskyj. 1992. Intercalation of ethylenediamine functionalized buckminsterfullerene in mica-type silicates. Chemistry of Materials 4: 20–22. doi: 10.1021/cm00019a008.CrossRefGoogle Scholar
  54. Nasser, A., M. Gal, Z. Gerstl, U. Mingelgrin, and S. Yariv. 1997. Adsorption of alachlor by montmorillonites. Journal of Thermal Analysis 50: 257–268. doi: 10.1007/BF01979566.CrossRefGoogle Scholar
  55. Nebbioso, A., and A. Piccolo. 2013. Molecular characterization of dissolved organic matter (DOM): A critical review. Analytical and Bioanalytical Chemistry 405: 109–124. doi: 10.1007/s00216-012-6363-2.CrossRefGoogle Scholar
  56. Ogawa, M., T. Ishii, N. Miyamoto, and K. Kuroda. 2003. Intercalation of a cationic azobenzene into montmorillonite. Applied Clay Science 22: 179–185.CrossRefGoogle Scholar
  57. Oren, A., and B. Chefetz. 2005. Sorption–desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments. Chemosphere 61: 19–29. doi: 10.1016/j.chemosphere.2005.03.021.CrossRefGoogle Scholar
  58. Orsi, M. 2014. Molecular dynamics simulation of humic substances. Chemical and Biological Technologies in Agriculture 1: 1–14. doi: 10.1186/s40538-014-0010-4.CrossRefGoogle Scholar
  59. Philippe, A., and G.E. Schaumann. 2014. Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environmental Science and Technology 48: 8946–8962.CrossRefGoogle Scholar
  60. Pignatello, J.J., and B. Xing. 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology 30: 1–11. doi: 10.1021/es940683g.CrossRefGoogle Scholar
  61. Prost, R., Z. Gerstl, B. Yaron, J. Chaussidon. 1977. Infrared studies of parathion attapulgite interactions. Special Publication Agricultural Research Organization, Volcani Cent. Div. Sci. Publ., 27–32.Google Scholar
  62. deB Richter, D. 2007. Humanity’s transformation of earth’s soil: Pedology’s new frontier. Soil Science 172: 957–967. doi: 10.1097/ss.0b013e3181586bb7.CrossRefGoogle Scholar
  63. deB Richter, D., and D.H. Yaalon. 2012. “The changing model of soil” revisited. Soil Science Society of America Journal 76: 766. doi: 10.2136/sssaj2011.0407.CrossRefGoogle Scholar
  64. Romić, M., L. Matijević, H. Bakić, and D. Romić. 2014. Copper accumulation in vineyard soils: distribution, fractionation and bioavailability assessment. In Environmental risk assessment of soil contamination, ed. M.C. Hernandez Soriano. Rijeka: InTech.Google Scholar
  65. Roy, J.L., W.B. McGill, H.A. Lowen, and R.L. Johnson. 2003. Relationship between water repellency and native and petroleum-derived organic carbon in soils. Journal of Environmental Quality 32: 583–590.CrossRefGoogle Scholar
  66. Salomons, W. 1995. Long term strategies for handling contaminated sites and large scale areas. In Biogeodynamics of pollutants in soils and sediments, ed. W. Salomons, and W.M. Stigliani, 1–30. Berlin: Springer.CrossRefGoogle Scholar
  67. Saltzman, S., and S. Yariv. 1976. Infrared and X-ray study of parathion-montmorillonite sorption complexes. Soil Science Society of America Journal 40: 34. doi: 10.2136/sssaj1976.03615995004000010013x.CrossRefGoogle Scholar
  68. Sanchez-Martin, M.J., M.S. Rodriguez-Cruz, M.S. Andrades, and M. Sanchez-Camazano. 2006. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticides hydrophobicity. Applied Clay Science 31: 216–228.CrossRefGoogle Scholar
  69. Sander, M., Y. Lu, and J.J. Pignatello. 2005. A thermodynamically based method to quantify true sorption hysteresis. Journal of Environmental Quality 34: 1063. doi: 10.2134/jeq2004.0301.CrossRefGoogle Scholar
  70. Sander, M., Y. Lu, and J.J. Pignatello. 2006. Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion. Environmental Science and Technology 40: 170–178. doi: 10.1021/es0506253.CrossRefGoogle Scholar
  71. Schlegel, M.L.K., L. Charlet, and A. Manceau. 1999. Sorption of metal ions on clay minerals. Journal of Colloid and Interface Science 220: 392–405. doi: 10.1006/jcis.1999.6538.CrossRefGoogle Scholar
  72. Sedlmair, J., S.C. Gleber, S. Wirick, P. Guttmann, and J. Thieme. 2012. Interaction between carbon nanotubes and soil colloids studied with X-ray spectromicroscopy. Chem. Geol. 329: 32–41. doi: 10.1016/j.chemgeo.2011.08.009.CrossRefGoogle Scholar
  73. Selim, H.M. 2013. Transport and retention of heavy metal in soils: Competitive sorption. Advances in Agronomy 119: 275–308.CrossRefGoogle Scholar
  74. Senesi, N., and Y. Chen. 1989. Interactions of toxic organic chemicals with humic substances. In Toxic organic chemicals in porous media, ecological studies, ed. Z. Gerstl, Y. Chen, U. Mingelgrin, and B. Yaron, 37–90. Berlin: Springer.CrossRefGoogle Scholar
  75. Senesi, N., C. Testini, and T.M. Miano. 1987. Interaction mechanisms between humic acids of different origin and nature and electron donor herbicides: A comparative IR and ESR study. Organic Geochem. 11: 25–30. doi: 10.1016/0146-6380(87)90048-9.CrossRefGoogle Scholar
  76. Sojka, R.E., D.L. Bjorneberg, J.A. Entry, R.D. Lentz, and W.J. Orts. 2007. Polyacrylamide in agriculture and environmental land management. In Advances in agronomy, ed. D.L. Sparks, 75–162. Cambridge: Academic Press.Google Scholar
  77. Spurgeon, D.J., S.P. Hopkin, and D.T. Jones. 1994. Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (savigny): Assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environmental Pollution 84: 123–130.CrossRefGoogle Scholar
  78. Strawn, D.C., and D.L. Sparks. 1999. The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. Journal of Colloid and Interface Science 216: 257–269. doi: 10.1006/jcis.1999.6330.CrossRefGoogle Scholar
  79. Sullivan, J.D., and G.T. Felbeck. 1968. A study of the interaction of s-triazine herbicides with humic acids from three different soils. Soil Science 106: 42–52. doi: 10.1097/00010694-196807000-00007.CrossRefGoogle Scholar
  80. Tu, H.L., T.B. He, X.H. Lu, Y.C. Lang, and L.B. Li. 2013. Accumulation of trace elements in paddy topsoil of the Wudang County, Southwest China: Parent materials and anthropogenic controls. Environmental Earth Sciences 70: 131–137.CrossRefGoogle Scholar
  81. Wallach, R., and E.R. Graber. 2007. Infiltration into effluent irrigation-induced repellent soils and the dependence of repellency on ambient relative humidity. Hydrological Processes 21: 2346–2355. doi: 10.1002/hyp.6748.CrossRefGoogle Scholar
  82. Wang, D., L. Ge, J. He, W. Zhang, D.P. Jaisi, and D. Zhou. 2014. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology 164: 35–48. doi: 10.1016/j.jconhyd.2014.05.007.CrossRefGoogle Scholar
  83. Weber, J.B., and S.B. Weed. 1968. Adsorption and Desorption of diquat, paraquat, and prometone by montmorillonitic and kaolinitic clay minerals. Soil Science Society of America Journal 32: 485. doi: 10.2136/sssaj1968.03615995003200040020x.CrossRefGoogle Scholar
  84. Wyszkowska, J., J. Kucharski, and W. Lajszner. 2006. The effects of copper on soil biochemical properties and its interaction with other heavy metals. Polish Journal of Environmental Studies 15: 927–934.Google Scholar
  85. Yaalon, D.H., and B. Yaron. 1966. Framework for man-made soil changes-an outline of metapedogenesis. Soil Science 102: 272–277.CrossRefGoogle Scholar
  86. Yang, K., D. Lin, and B. Xing. 2009. Interactions of humic acid with nanosized inorganic oxides. Langmuir 25: 3571–3576. doi: 10.1021/la803701b.CrossRefGoogle Scholar
  87. Yariv, S., and H. Cross. 2002. Organo-clay complexes and interactions. New York: Marcel Dekker.Google Scholar
  88. Yaron, B., I. Dror, and B. Berkowitz. 2008. Contaminant-induced irreversible changes in properties of the soil-vadose-aquifer zone: an overview. Chemosphere 71: 1409–1421. doi: 10.1016/j.chemosphere.2007.11.045.CrossRefGoogle Scholar
  89. Yaron, B., I. Dror, and B. Berkowitz. 2009. Chemical contaminants as factor of soil-subsurface metagenesis. IUSS Bulletin 115: 11–12.Google Scholar
  90. Yaron, B., I. Dror, and B. Berkowitz. 2010. Contaminant geochemistry—A new perspective. Naturwissenschaften 97: 1–17. doi: 10.1007/s00114-009-0592-z.CrossRefGoogle Scholar
  91. Yaron, B., I. Dror, and B. Berkowitz. 2012. Soil-subsurface change. Berlin: Springer.CrossRefGoogle Scholar
  92. Yaron, B., I. Dror, and B. Berkowitz. 2016. Engineered nanomaterials as a potential metapedogenetic factor: A perspective. Catena. doi: 10.1016/j.catena.2016.02.003.Google Scholar
  93. Zhang G.L., and L.M. Chen. 2010. Soil genesis along a paddy soil chronosequence in a millennium scale. Presented at the Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 1.3.1 Pedogenesis: ratio and ranges of influence, International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur, 88–91.Google Scholar
  94. Zhang, M., Y. Wang, D. Zhao, and G. Pan. 2010. Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chinese Science Bulletin 55: 365–372. doi: 10.1007/s11434-009-0703-4.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations