AMBIO

, Volume 40, Issue 4, pp 408–416 | Cite as

Economic Feasibility Study for Phosphorus Recovery Processes

  • María Molinos-Senante
  • Francesc Hernández-Sancho
  • Ramón Sala-Garrido
  • Manel Garrido-Baserba
Report

Abstract

Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view.

Keywords

Cost–benefit analysis Economic feasibility Environmental benefits Phosphorus recovery Shadow prices Sustainable development 

Notes

Acknowledgments

The authors wish to acknowledge the financial assistance received from the Spanish government through the NOVEDAR-Consolider Project (CSD2007-00055) and FPU program (AP2007-03483). Also the authors are grateful to the Journal editor and two anonymous referees for their helpful comments and suggestions.

References

  1. Ahmed, S.Y., R.S. Shiel, and D. Manning. 2006. Use of struvite, a novel P source derived from wastewater treatment, in wheat cultivation. In 18th World congress of soil science, Philadelphia, Pennsylvania, USA, 9–15 July.Google Scholar
  2. Berg, U., G. Knoll, E. Kaschka, P.G. Weidler, and R. Nüesch. 2006. Is phosphorus recovery form waste water feasible? Environmental Technology 28: 165–172.CrossRefGoogle Scholar
  3. Bridger, G.L., M.L. Salutsky, and R.W. Starostka. 1962. Metal ammonium phosphates as fertilizers. Journal of Agricultural and Food Chemistry 10: 181–188.CrossRefGoogle Scholar
  4. Chambers, R.G. 1998. Input and output indicators. In Index numbers: essays in honour of Sten Malmquist, ed. R. Färe, S. Grosskopf, and R. Russell. Boston: Kluwer Academic Publishers.Google Scholar
  5. Cornel, P., and C. Schaum. 2009. Phosphorus recovery from wastewater: needs, technologies and costs. Water Science & Technology 59 (6): 1069–1076.CrossRefGoogle Scholar
  6. de-Bashan, L.E., and Y. Bashan. 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research 38: 4222–4246.CrossRefGoogle Scholar
  7. Dockhorn, T. 2007. Stoffstrommanagement und Ressourcenökonomie in der kommunalen, Abwasserwirtsschaft, TU Braunschweig 74, ISSN 0934-9731.Google Scholar
  8. Dockhorn, T. 2009. About the economy of phosphorus recovery. In International conference on nutrient recovery from wastewater streams, ed. K. Ashley, D. Mavinic, and F. Koch. London, UK: IWA Publishing.Google Scholar
  9. Elliott, H.A. and G.A. O’Connor. 2007. Phosphorus management for sustainable biosolids recycing in the United States. Soil Biology and Biochemistry 39 (6): 1318–1327.Google Scholar
  10. Färe, R., S. Grosskopf, C.A. Lovell, and S. Yaisawarng. 1993. Derivation of shadow prices for undesirable outputs: A distance function approach. Review of Economics and Statistics 75 (2): 374–380.Google Scholar
  11. Färe, R., S. Grosskopf, and W. Weber. 2001. Shadow prices of Missouri public conservation land. Public Finance Review 29 (6): 444–460.Google Scholar
  12. Färe, R., S. Grosskopf, and W. Weber. 2006. Shadow prices and pollution costs in U.S. agriculture. Ecological Economics 56: 89–103.Google Scholar
  13. Färe, R., and S. Grosskopf. 1998. Shadow pricing of good and bad commodities. American Journal of Agricultural Economics 80: 584–590.CrossRefGoogle Scholar
  14. Färe, R., S. Grosskopf, Donh-Woon Noh, and W. Weber. 2005. Characteristics of a polluting technology: Theory and practice. Journal of Econometrics 126: 469–492.CrossRefGoogle Scholar
  15. Florida Institute of Phosphate Research. 1999. Phosphate deposits bibliography, ed. P. Zhang, G.R. Albarelli, and K.J. Stewart. Available at www.fipr.state.fl.us.
  16. Ha, N.V., S. Kant, and V.W. Maclaren. 2008. Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam. Ecological Economics 65 (3): 98–110.Google Scholar
  17. Hernández, F., M. Molinos, and R. Sala. 2010. Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Science of the Total Environment 408 (4): 953–957.Google Scholar
  18. Hernández, F., and R. Sala. 2009. Technical efficiency and cost analysis in wastewater treatment processes: A DEA approach. Desalination 249 (1): 230–234.CrossRefGoogle Scholar
  19. Hernández, F., A. Urkiaga, L. De las Fuentes, B. Bis, E. Chiru, B. Balazs, and T. Wintgens. 2006. Feasibility studies for water reuse projects: An economical approach. Desalination 187: 253–261.CrossRefGoogle Scholar
  20. Jasinki, S.M., D.A. Kramer, J.A. Ober, and J.P. Searls. 1999. Fertilizers-sustaining global food supplies. USGS Fact Sheet FS:155–199.Google Scholar
  21. Jeanmaire, N., and T. Evans. 2001. Technico-economic feasibility of P-recovery from municipal wastewaters. Environmental Technology 22 (11): 1355–1361.CrossRefGoogle Scholar
  22. Köhler, J. 2004. Phosphorus recycling: Regulation and economic analysis. In Phosphorus in environmental technologies: Principles and applications, ed. E. Valsami Jones, 529–546. London, UK: IWA publishing.Google Scholar
  23. Lind, B.B., Z. Ban, and S. Bydén. 2000. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology 73: 169–174.CrossRefGoogle Scholar
  24. Lunt, O.R., A.M. Kofranek, and S.B. Clark. 1964. Availability of minerals from magnesium ammonium phosphates. Journal of Agricultural and Food Chemistry 12: 497–504.CrossRefGoogle Scholar
  25. Maier, W., A. Weidelener, J. Krampe, and U. Rott. 2005. Entwicklung eines Verfarens zur Phosphat-Rückgewinnung aus ausgefaultem Nasschlamm oder entwässertem Faulschlamm als gut Pflanzenverfügbares Magnesium-Ammonium-Phosphat (MAP), Schlussbericht des durch die Deutsche Bundesstiftung Umwelt (Osnabrück) geförderten Forschungsvorhabens AZ 21042.Google Scholar
  26. Marti, N., L. Pastor, A. Bouzas, J. Ferrer, and A. Seco. 2010. Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Research 41 (7): 2371–2379.CrossRefGoogle Scholar
  27. Molinos, M., F. Hernández, and R. Sala. 2010. Economic feasibility study for wastewater treatment: A cost benefit analysis. Science of the Total Environment 408: 4396–4402.Google Scholar
  28. Montag, D., K. Gethke, and J. Pinnekamp. 2009. Different strategies for recovering phosphorus: Technologies and costs. In International conference on nutrient recovery from wastewater streams, ed. K. Ashley, D. Mavinic, and F. Koch. London, UK: IWA Publishing.Google Scholar
  29. Münch, E.V., and K. Barr. 2001. Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams. Water Research 35: 151–159.CrossRefGoogle Scholar
  30. Pastor, L. 2008. Estudio de precipitación y recuperación del fósforo presente en las aguas residuales en forma de estruvita (MgNH 4 PO 4 6H 2 O). Valencia: Departamento de Ingeniería Hidraúlica y Medio Ambiente, Universidad Politécnica de Valencia (in Spanish).Google Scholar
  31. Paul, E., M.L. Laval, and M. Sperandio. 2001. Excess sludge production and costs due to phosphorus removal. Environmental Technology 22: 1363–1372.CrossRefGoogle Scholar
  32. Pinnekamp, J., K. Gethke, and D. Montag. 2005. Stand der Forschung zur Phosphorrückgewinnung, 38. Essener Tagung für Wasser-und Abfallwirtschaft, Aachen, 11.3.2005. Schriftenreihe Gewässerschutz-Wasser-Abwasser, Nr. 198, Aachen.Google Scholar
  33. Römer, W. 2006. Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch. Journal of Plant Nutrition and Soil Science 169: 826–832.CrossRefGoogle Scholar
  34. Schaum, C.A. 2007. Verfahren für eine zukünftige Klärschlammbehandlung- Klärschlammkonditionierung und Rückgewinnung von Phosphor aun Klärschlammasche, Schriftenreihe WAR, TU Darmstadt 185.Google Scholar
  35. Shimamura, K., T. Tanaka, Y. Miura, and H. Ishikawa. 2003. Development of high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system. Water Science and Technology 48 (1): 163–170.Google Scholar
  36. Shu, L., P. Schneider, V. Jegatheesan, and J. Johnson. 2006. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology 97 (17): 2211–2216.CrossRefGoogle Scholar
  37. Steen, I. 1998. Phosphorus availability in the 21st century management of a non-renewable resource. Phosphorus and Potassium 217: 25–31.Google Scholar
  38. Taruya, T., Y. Ueno, and M. Fujii. 2000. Development of phosphorus resource recycling process from sewage. In 1st world water congress of IWA, Paris, 03–06 July, Poster NP-046.Google Scholar
  39. Ueno, Y., and M. Fujii. 2001. Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology 22: 1373–1381.CrossRefGoogle Scholar
  40. Van Dijk, J.C., and H. Braakensiek. 1984. Phosphate removal by crystallization in a fluidized bed. Water Science and Technology 17: 133–142.Google Scholar
  41. US Geological Survey. 2005. Phosphate rock. Available from: http://minerals.er.usgs.gov/minerals/pubs/commodity/phosphate_rock/phospmcs05.pdf.
  42. U.S Geological Survey Home Page. http://minerals.usgs.gov/minerals/.
  43. Yen, Z.L., S.H. Chen, S.M. Wang, L.F. Lin, Y.J. Yan, Z.J. Zhang, and J.S. Chen. 2010. Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology. Journal of Hazardous Materials 176 (1–3): 1083–1088.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2010

Authors and Affiliations

  • María Molinos-Senante
    • 1
  • Francesc Hernández-Sancho
    • 1
  • Ramón Sala-Garrido
    • 2
  • Manel Garrido-Baserba
    • 3
  1. 1.Department of Applied Economics II, Faculty of EconomicsUniversity of ValenciaValenciaSpain
  2. 2.Department of Mathematics for Economics, Faculty of EconomicsUniversity of ValenciaValenciaSpain
  3. 3.Catalan Institute for Water ResearchGironaSpain

Personalised recommendations