Molecular & Cellular Toxicology

, Volume 15, Issue 2, pp 199–208 | Cite as

The immunological and oxidative stress regulation of non-thermal plasma-aided water on atopic dermatitis-like lesion in dinitrochlorobenzene-induced SKH-1 hairless mice

  • Jesmin Ara
  • Johny Bajgai
  • Ma. Easter Joy Sajo
  • Ailyn Fadriquela
  • Cheol-Su Kim
  • Soo-Ki Kim
  • Kyu-Jae LeeEmail author
Original Paper



While non-thermal plasma aided water (NTP-AW) has been currently used as a novel therapeutic against wide array of diseases, it remains unknown on therapeutic effect against atopic dermatitis (AD). To answer this, we evaluated the effect of NTP-AW on the regulation of immune and antioxidant markers in dinitrochlorobenzene (DNCB)-induced AD in hairless mice.


The skin damage in mice was induced by 1% DNCB for the first wk and 0.5% every alternate day for 3 wks followed by 4 wks NTP-AW treatment through spraying and bathing method.


Treatment with NTP-AW reduced the severity of dermatitis symptoms and skin scratching behavior. In line, immunological profiling showed the improved parameters such as decrease in the number of neutrophils, lymphocyte, eosinophil as well as Th2-mediated IgE overproduction, and the reduced level of pro-inflammatory cytokine such as interleukin (IL)-1β, and tumor necrosis factor (TNF)-α. Redox profiling showed that NTP-AW reduced the production of total reactive oxygen species (ROS), and enhanced the antioxidant enzyme activity.


Collectively, this study clearly indicates the therapeutic effect of NTP-AW on DNCB-induced AD in hairless mice via immuno-redox regulation, clinically implying that NTP-AW treatment might be a safe and promising therapeutic candidate against AD.


Atopic dermatitis Non-thermal plasma DNCB Redox profiling Pro-inflammatory cytokines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, J. N. et al. Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J Invest Dermatol 127, 564–567 (2007).CrossRefGoogle Scholar
  2. 2.
    Pugliarello, S., Cozzi, A., Gisondi, P. & Girolomoni, G. Phenotypes of atopic dermatitis. J Dtsch Dermatol Ges 9, 12–20 (2011).Google Scholar
  3. 3.
    Cookson, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat Rev Immunol 4, 978–988 (2004).CrossRefGoogle Scholar
  4. 4.
    Novak, N., Bieber, T. & Leung, D. Y. M. Immune mechanisms leading to atopic dermatitis. J Allergy Clin Immunol 112, 128–139 (2003).CrossRefGoogle Scholar
  5. 5.
    Trautmann, A. et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106, 25–35 (2000).CrossRefGoogle Scholar
  6. 6.
    Pastore, S., Mascia, F. & Girolomoni, G. The contribution of keratinocytes to the pathogenesis of atopic dermatitis. Eur J Dermatol 16, 125–131 (2006).Google Scholar
  7. 7.
    Akhavan, A. & Rudikoff, D. Atopic dermatitis: systemic immunosuppressive therapy. Semin Cutan Med Surg 27, 151–155 (2008).CrossRefGoogle Scholar
  8. 8.
    Levy, M. L. Atopic dermatitis: understanding the disease and its management. Curr Med Res Opin 23, 3091–3103 (2007).CrossRefGoogle Scholar
  9. 9.
    Simpson, E. L. Atopic dermatitis: a review of topical treatment options. Curr Med Res Opin 26, 633–640 (2010).CrossRefGoogle Scholar
  10. 10.
    Charman, C. R., Morris, A. D. & Williams, H. C. Topical corticosteroid phobia in patients with atopic eczema. Br J Dermatol 142, 931–936 (2000).CrossRefGoogle Scholar
  11. 11.
    Fridman, G. et al. Applied Plasma Medicine. Plasma Process Polym 5, 503–533 (2008).CrossRefGoogle Scholar
  12. 12.
    Heinlin, J. et al. Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges 8, 968–976 (2010).Google Scholar
  13. 13.
    Klampfl, T. G. et al. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78, 5077–5082 (2012).CrossRefGoogle Scholar
  14. 14.
    Schmidt, A., Bekeschus, S., Wende, K., Vollmar, B. & Von-Woedtke, T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 26, 156–162 (2017).CrossRefGoogle Scholar
  15. 15.
    Isbary, G. et al. Low-temperature Argon plasma - a new strategy against multiresistance of germs andimpaired wound healing. Free Radic Biol Med 47, S145 (2009).CrossRefGoogle Scholar
  16. 16.
    Lee, K., Paek, K. H., Ju, W. T. & Lee, Y. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44, 269–275 (2006).Google Scholar
  17. 17.
    Moisan, M. et al. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226, 1–21 (2001).CrossRefGoogle Scholar
  18. 18.
    Venezia, R. A., Orrico, M., Houston, E., Yin, S. M. & Naumova, Y. Y. Lethal activity of nonthermal plasma sterilization against microorganisms. Infect Control Hosp Epidemiol 29, 430–436 (2008).CrossRefGoogle Scholar
  19. 19.
    Ermolaeva, S. A. et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol 60, 75–83 (2011).CrossRefGoogle Scholar
  20. 20.
    Hashimoto, Y., Arai, I., Tanaka, M. & Nakaike, S. Prostaglandin D2 inhibits IgE-mediated scratching by suppressing histamine release from mast cells. J Pharmacol Sci 98, 90–93 (2005).CrossRefGoogle Scholar
  21. 21.
    Lee, J. K. et al. Perfluorooctane sulfonate exacerbates mast cell-mediated allergic inflammation by the release of histamine. Mol Cell Toxicol 14, 173–181 (2018).CrossRefGoogle Scholar
  22. 22.
    Stone, K. D., Prussin, C. & Metcalfe, D. D. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125, 1–16 (2011).Google Scholar
  23. 23.
    Leung, D., Boguniewicz, M., Howell, M., Nomura, I. & Hamid, Q. New insights into atopic dermatitis. J Clin Invest 113, 651–657 (2004).CrossRefGoogle Scholar
  24. 24.
    Corsini, E., Galbiati, V., Nikitovic, D. & Tsatsakis, A. M. Role of oxidative stress in chemical allergens induced skin cells activation. Food Chem Toxicol 61, 74–81 (2013).CrossRefGoogle Scholar
  25. 25.
    Bajgai, J. et al. Balneotherapeutic effects of high mineral spring water on the atopic dermatitis-like inflammation in hairless mice via immunomodulation and redox balance. BMC Complement Altern Med 17, 1–9 (2017).CrossRefGoogle Scholar
  26. 26.
    Kannan, K. & Jain, S. K. Oxidative stress and apoptosis. Pathophysiology 7, 153–163 (2000).CrossRefGoogle Scholar
  27. 27.
    Odabasoglu, F. et al. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol 103, 59–65 (2006).CrossRefGoogle Scholar
  28. 28.
    Williams, C. M., Rahman, S., Hubeau, C. & Ma, H. L. Cytokine pathways in allergic disease. Toxicol Pathol 40, 205–215 (2012).CrossRefGoogle Scholar
  29. 29.
    Junghans, V., Gutgesell, C., Jung, T. & Neumann, C. Epidermal cytokines IL-1beta, TNF-alpha, and IL-12 in patients with atopic dermatitis: response to application of house dust mite antigens. J Invest Dermatol 111, 1184–1188 (1998).CrossRefGoogle Scholar
  30. 30.
    Dunnill, C. et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 14, 89–96 (2017).CrossRefGoogle Scholar
  31. 31.
    Dhupal, M., Kim, C. S., Ignacio, R. M., Tripathy, D. & Kim, S. K. Effects of small black soybean product germinated with sulfur on immuno-redox status in C57BL/6 mice. Mol Cell Toxicol 13, 115–124 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  • Jesmin Ara
    • 1
    • 2
  • Johny Bajgai
    • 1
    • 2
  • Ma. Easter Joy Sajo
    • 3
  • Ailyn Fadriquela
    • 1
    • 2
  • Cheol-Su Kim
    • 4
  • Soo-Ki Kim
    • 4
  • Kyu-Jae Lee
    • 1
    • 5
    Email author
  1. 1.Department of Environmental Medical BiologyWonju College of Medicine Yonsei UniversityWonju, GangwonRepublic of Korea
  2. 2.Department of Global Medical ScienceWonju College of Medicine Yonsei UniversityWonju, GangwonRepublic of Korea
  3. 3.Institute of BiologyUniversity of Philippines, DilimanQuezon CityPhilippines
  4. 4.Department of Microbiology, Institute of Genomic CohortWonju College of Medicine Yonsei UniversityWonju, GangwonRepublic of Korea
  5. 5.Institute for Poverty Alleviation and International DevelopmentYonsei UniversityWonju, GangwonRepublic of Korea

Personalised recommendations