Molecular & Cellular Toxicology

, Volume 15, Issue 2, pp 173–183 | Cite as

Manganese induces neuroinflammation via NF-κB/ROS NLRP3 pathway in rat brain striatum and HAPI cells

  • Xinyuan Zhao
  • Lifeng Yin
  • Yifan Wu
  • Muxi Han
  • Yin Zhuang
  • Yewen Cong
  • Yiming Liu
  • Gang Chen
  • Junkang JiangEmail author
Original Paper



Chronic exposure to excessive Mn can result in neurodegenerative symptoms, whose precise molecular mechanism remains largely unclear. Here, we measured the role and mechanism of NLRP3 in Mninduced neuroinflammation in vivo and vitro.


The effects of Mn on NLRP3 activation were investigated by Westernblot, IHC, immunofluorescence analysis, as well as ELISA. We assessed NF-κB activation through measurement of phosphorylation and nuclear translocation. The mechanisms bywhich Mn induced NLRP3 activation were assessed by specific inhibitors.


We found that Mn exposure facilitated the activation of NLRP3 inflammasome to promote the production of IL-1β and IL-18 in dose- and time-dependent manners in HAPI cells. In addition, the NLRP3 inflammasome was also dramatically activated in microglia of rat brain striatum after Mn exposure. We also found increased ROS and NF-κB activation. Notably, the activation of NLRP3 was significantly attenuated by pretreatment with NF-κB and ROS inhibitors.


These findings suggest that NLRP3 activation plays an important role in Mn-induced neuroinflammation, and it is associated with NF-κB and ROS.


Manganese Microglia NLRP3 inflammasome NF-κB/ROS Neuroinflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bjorklund, G., Chartrand, M. S. & Aaseth, J. Manganese exposure and neurotoxic effects in children. Environ Res 155, 380–384 (2017).CrossRefGoogle Scholar
  2. 2.
    Gawlik, M., Gawlik, M. B., Smaga, I. & Filip, M. Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep 69, 322–330 (2017).CrossRefGoogle Scholar
  3. 3.
    Bouabid, S., Tinakoua, A., Lakhdar-Ghazal, N. & Benazzouz, A. Manganese Neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem 136, 677–691 (2015).CrossRefGoogle Scholar
  4. 4.
    Liccione, J. J. & Maines, M. D. Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J Pharmacol Exp Ther 247, 156–161 (1988).Google Scholar
  5. 5.
    Wan, C. et al. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis. Toxicol Appl Pharmacol 281, 294–302 (2014).CrossRefGoogle Scholar
  6. 6.
    Zhao, F. et al. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107, 156–164 (2009).CrossRefGoogle Scholar
  7. 7.
    Gustin, A. et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10, e0130624 (2015).CrossRefGoogle Scholar
  8. 8.
    De Lucia, C. et al. Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Behav Immun 55, 179–190 (2016).CrossRefGoogle Scholar
  9. 9.
    Alam, Q. et al. Inflammatory process in Alzheimer’s and Parkinson’s diseases: central role of cytokines. Curr Pharm Des 22, 541–548 (2016).CrossRefGoogle Scholar
  10. 10.
    Hines, D. J., Hines, R. M., Mulligan, S. J. & Macvicar, B. A. Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia 57, 1610–1618 (2009).CrossRefGoogle Scholar
  11. 11.
    Shan, H. et al. Fluoxetine protects against IL-1beta-induced neuronal apoptosis via downregulation of p53. Neuropharmacology 107, 68–78 (2016).CrossRefGoogle Scholar
  12. 12.
    Yin, L. et al. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1beta to promote neuronal death. Neurotoxicology 64, 195–203 (2017).CrossRefGoogle Scholar
  13. 13.
    Wu, Z. et al. Differential pathways for interleukin-1beta production activated by chromogranin A and amyloid beta in microglia. Neurobiol Aging 34, 2715–2725 (2013).CrossRefGoogle Scholar
  14. 14.
    Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417–426 (2002).CrossRefGoogle Scholar
  15. 15.
    Alfonso-Loeches, S., Urena-Peralta, J. R., Morillo-Bargues, M. J., Oliver-De La Cruz, J. & Guerri, C. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 8, 216, doi:10.3389 (2014).CrossRefGoogle Scholar
  16. 16.
    Tan, M. S., Yu, J. T., Jiang, T., Zhu, X. C. & Tan, L. The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 48, 875–882 (2013).CrossRefGoogle Scholar
  17. 17.
    Hornung, V. & Latz, E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol 40, 620–623 (2010).CrossRefGoogle Scholar
  18. 18.
    Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10, 210–215 (2010).CrossRefGoogle Scholar
  19. 19.
    Arlehamn, C. S., Petrilli, V., Gross, O., Tschopp, J. & Evans, T. J. The role of potassium in inflammasome activation by bacteria. J Biol Chem 285, 10508–10518 (2010).CrossRefGoogle Scholar
  20. 20.
    Shi, S. et al. KHSRP participates in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Mol Neurosci 55, 454–465 (2015).CrossRefGoogle Scholar
  21. 21.
    Peres, T. V. et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics 8, 597–604 (2016).CrossRefGoogle Scholar
  22. 22.
    Jiang, J. K. et al. Upregulation of mitochondrial protease HtrA2/Omi contributes to manganese-induced neuronal apoptosis in rat brain striatum. Neuroscience 268, 169–179 (2014).CrossRefGoogle Scholar
  23. 23.
    Cai, Q., Li, Y. & Pei, G. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J Neuroinflammation 14, 63, doi: (2017).CrossRefGoogle Scholar
  24. 24.
    Wang, D. et al. The role of NLRP3-CASP1 in inflammasome- mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy 13, 914–927 (2017).CrossRefGoogle Scholar
  25. 25.
    Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).CrossRefGoogle Scholar
  26. 26.
    Schwartz, M. & Baruch, K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33, 7–22 (2014).CrossRefGoogle Scholar
  27. 27.
    Peres, T. V. et al. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17, 57 (2016).CrossRefGoogle Scholar
  28. 28.
    Jiang, J. et al. Downregulation of the Wnt/beta-catenin signaling pathway is involved in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Neurosci Res 92, 783–794 (2014).CrossRefGoogle Scholar
  29. 29.
    Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105, 8067–8072 (2008).CrossRefGoogle Scholar
  30. 30.
    Tanaka, S. et al. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL- 1 knockout mice. J Neuroinflammation 10, 143 (2013).CrossRefGoogle Scholar
  31. 31.
    Mizushima, H. et al. Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1. J Comp Neurol 448, 203–216 (2002).CrossRefGoogle Scholar
  32. 32.
    Tanaka, S. et al. Involvement of interleukin-1 in lipopolysaccaride- induced microglial activation and learning and memory deficits. J Neurosci Res 89, 506–514 (2011).CrossRefGoogle Scholar
  33. 33.
    Murphy, N., Grehan, B. & Lynch, M. A. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med 16, 205–215 (2014).CrossRefGoogle Scholar
  34. 34.
    He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41, 1012–1021 (2016).CrossRefGoogle Scholar
  35. 35.
    Kim, E. H., Park, M. J., Park, S. & Lee, E. S. Increased expression of the NLRP3 inflammasome components in patients with Behcet’s disease. J Inflamm (Lond) 12, 41 (2015).CrossRefGoogle Scholar
  36. 36.
    Ozaki, E., Campbell, M. & Doyle, S. L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 8, 15–27 (2015).Google Scholar
  37. 37.
    Shao, B. Z., Xu, Z. Q., Han, B. Z., Su, D. F. & Liu, C. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6, 262 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  • Xinyuan Zhao
    • 1
  • Lifeng Yin
    • 1
  • Yifan Wu
    • 1
  • Muxi Han
    • 1
  • Yin Zhuang
    • 1
  • Yewen Cong
    • 1
  • Yiming Liu
    • 1
  • Gang Chen
    • 1
  • Junkang Jiang
    • 1
    Email author
  1. 1.Department of Occupational Medicine and Environmental Toxicology, School of Public HealthNantong UniversityNantong, JiangsuPeople’s Republic of China

Personalised recommendations