Advertisement

Molecular & Cellular Toxicology

, Volume 15, Issue 1, pp 57–63 | Cite as

Chronic exposure to ethylenethiourea induces kidney injury and polycystic kidney in mice

  • Hwa-Kyoung Chung
  • Won-Chul Cho
  • Hye Yeon Park
  • Seung Hee Choi
  • Daeho Kwon
  • Woon-Seob Shin
  • Jae Seok Song
  • Byong-Gon ParkEmail author
Original Paper
  • 12 Downloads

Abstract

Backgrounds

Ethylenethiourea (ETU) is one of the main metabolite of ethylenebisdithiocarbamate fungicides and potential exposure is highest for workers involved in rubber and fungicide production. Exposure of ETU induces endocrine disruption, teratogenesis, carcinogenicity, and goitrogenicity.

Methods

ETU was administrated at concentration of 2 mg/kg/day for 58 weeks in C57BL/6 mice. After 58 weeks, blood samples were analyzed serum lipid profile, hepatic function dices, and plasma levels of creatine and blood urea nitrogen. Isolated kidneys were stained with haematoxylin-eosin. Analysis of miRNA expression profile was conducted on Affymetrix miRNA 4.0 Array.

Results

Chronic diet of ETU induced body weight loss, increased serum triglyceride and total cholesterol, increased plasma creatine and blood urea nitrogen, injured glomerulus and nephron tubule, induced severe hydronephrosis and polycystic kidney. ETU diet increased expression levels of the biomarker of renal injury and fibrosis in kidney. miR-17~92 cluster and miR-182-5p associated with cyst progression were increased in expression levels on the kidney.

Conclusion

Chronic exposure to ETU at low concentrations results in functional and structural damage to the kidney, and increases cyst formation in the kidney.

Keywords

Ethylenethiourea Polycystic kidney miR-17~92 cluster miR-182-5p Renal injury Microarray Fibrosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frakes, R. A. Drinking water guideline for ethylene thiourea, a metabolite of ethylene bisdithiocarbamate fungicides. Regul Toxicol Pharmacol 8, 207–218 (1988).CrossRefGoogle Scholar
  2. 2.
    Lentza-Rizos, C. Ethylenethiourea (ETU) in relation to use of ethylenebisdithiocarbamate (EBDC) fungicides. Rev Environ Contam Toxicol 115, 1–37 (1990).Google Scholar
  3. 3.
    Houete, P., Bindoula, G. & Hoffman, J. R. Ethylenebisdithiocarbamates and ethylenethiourea: possible human health hazards. Environ Health Perspect 103, 568–573 (1995).CrossRefGoogle Scholar
  4. 4.
    Kwon, D. et al. Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. Mol Cell Toxicol 14, 105–112 (2018).CrossRefGoogle Scholar
  5. 5.
    Dearfield, K. L. Ethylene thiourea (ETU). A review of the genetic toxicity studies. Mutat Res 317, 111–132 (1994).CrossRefGoogle Scholar
  6. 6.
    Graham, S. L., Davis, K. J., Hansen, W. H. & Graham, C. H. Effects of prolonged ETU ingestion on the thyroid of the rat. Food Cosmet Toxicol 13, 493–499 (1975).CrossRefGoogle Scholar
  7. 7.
    Ulland, B. M. et al. Thyroid cancer in rats from ethylene thiourea intake. J Natl Cancer Inst 49, 583–584 (1972).Google Scholar
  8. 8.
    Chernoff, N. et al. Perinatal toxicity of maneb, ethylene thiourea, and ethylene-bisisothiocyanate sulfide in rodents. J Toxicol Environ Health 5, 821–834 (1979).CrossRefGoogle Scholar
  9. 9.
    Khera, K. S. Ethylenethiourea: a review of teratogenicity and distribution studies and an assessment of reproduction risk. CRC Crit Rev Toxicol 18, 129–139 (1987).CrossRefGoogle Scholar
  10. 10.
    Hill, R. N. et al. Thyroid follicular cell carcinogenesis. Fund Appl Toxicol 12, 629–697 (1989).CrossRefGoogle Scholar
  11. 11.
    Ruddick, J. A., Williams, D. T., Hierlihy, L. & Khera, K. S. (14C)Ethylenethiourea: distribution, excretion, and metabolism in pregnant rats. Teratology 13, 35–40 (1976).CrossRefGoogle Scholar
  12. 12.
    Kurttio, P. et al. Urinary excretion of ethylenethiourea and kidney morphology in rats after continuous oral exposure to nabam or ethylenethiourea. Arch Toxicol 65, 381–385 (1991).CrossRefGoogle Scholar
  13. 13.
    Yang, J. H. et al. Cadmium-induced biomarkers discovery and comparative network analysis in Daphnia magna. Mol Cell Toxicol 13, 327–336 (2017).CrossRefGoogle Scholar
  14. 14.
    Kwon, D. & Liew, H. miRNA profile of neuroprotection mechanism of echinomycin in Parkinson’s disease. Mol Cell Toxicol 13, 229–238 (2017).CrossRefGoogle Scholar
  15. 15.
    Daston, G. P., Rehnberg, B. F., Carver, B. & Kavlock, R. J. Functional teratogens of the rat kidney. II. Nitrofen and ethylenethiourea. Fundam Appl Toxicol 11, 401–415 (1998).CrossRefGoogle Scholar
  16. 16.
    Hager, M. R., Narla, A. D. & Tannock, L. R. Dyslipidemia in patients with chronic kidney disease. Rev Endoc Metab Disord 18, 29–40 (2017).CrossRefGoogle Scholar
  17. 17.
    An, Y. R., Kim, J. Y. & Kim, Y. S. Construction of a predictive model for evaluating multiple organ toxicity. Mol Cell Toxicol 12, 1–6 (2016).CrossRefGoogle Scholar
  18. 18.
    Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).CrossRefGoogle Scholar
  19. 19.
    Saikumar, J. et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 129, 256–267 (2012).CrossRefGoogle Scholar
  20. 20.
    Zhou, X. et al. Identification of urinary microRNA biomarkers for detection of gentamicin-induced acute kidney injury in rats. Regul Toxicol Pharmacol 78, 78–84 (2016).CrossRefGoogle Scholar
  21. 21.
    Chen, C. et al. Urinary miR-21 as a potential biomarker of hypertensive kidney injury and fibrosis. Sci Rep 7, 17737 (2017).CrossRefGoogle Scholar
  22. 22.
    Güçlü, A. et al. MicroRNA-125b as a new potential biomarker on diagnosis of renal ischemia-reperfusion injury. J Surg Res 207, 241–248 (2017).CrossRefGoogle Scholar
  23. 23.
    Pellegrini, K. L. et al. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis. Toxicol Appl Pharmacol 312, 42–52 (2016).CrossRefGoogle Scholar
  24. 24.
    He, F. et al. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 57, 1726–1736 (2014).CrossRefGoogle Scholar
  25. 25.
    Colbert, J. F. et al. A model-specific role of microRNA-223 as a mediator of kidney injury during experimental sepsis. Am J Physiol Renal Physiol 313, 553–559 (2017).CrossRefGoogle Scholar
  26. 26.
    Igarashi, P. & Somlo, S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13, 2284–2398 (2002).Google Scholar
  27. 27.
    Wilson, P. D. & Goilav, B. Cystic kidney disease. Annu Rev Pathol 2, 341–368 (2007).CrossRefGoogle Scholar
  28. 28.
    Patel, V. et al. miR-17~92 cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci 110, 10765–10770 (2013).CrossRefGoogle Scholar
  29. 29.
    Woo, Y. M. et al. Profiling of miRNAs and target genes related to cystogenesis in ADPKD models. Sci Rep 7, 14151 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  • Hwa-Kyoung Chung
    • 1
  • Won-Chul Cho
    • 2
  • Hye Yeon Park
    • 1
  • Seung Hee Choi
    • 1
  • Daeho Kwon
    • 3
  • Woon-Seob Shin
    • 3
  • Jae Seok Song
    • 4
  • Byong-Gon Park
    • 1
    Email author
  1. 1.Department of Physiology, College of MedicineCatholic Kwandong UniversityGangneungRepublic of Korea
  2. 2.Department of Thoracic and Cardiovascular Surgery, Gangneung Asan HospitalUlsan University College of MedicineGangneungRepublic of Korea
  3. 3.Department of Microbiology, College of MedicineCatholic Kwandong UniversityGangneungRepublic of Korea
  4. 4.Department of Preventive Medicine, College of MedicineCatholic Kwandong UniversityGangneungRepublic of Korea

Personalised recommendations