Molecular & Cellular Toxicology

, Volume 15, Issue 1, pp 49–56 | Cite as

Chlorin e6 and halogen light as a sebostatic photomedicine modulates linoleic acid-induced lipogenesis

  • A-Reum Ryu
  • Yong-Wan Kim
  • Mi-Young LeeEmail author
Original Paper



Chlorin e6-mediated photodynamic therapy (Ce6-PDT) showed anti-microbial and anti-inflammatory effects on acne vulgaris model previously. Excess sebum production in sebocytes is a crucial cause of acne. However, information on the effect of Ce6-PDT associated with lipogenesis in sebocytes has not been reported so far.


The oil red O staining, triglyceride assay and cholesterol assay were used to investigate lipid synthesis in human sebocytes. The expressions of various molecular signals associated with lipogenesis were examined by western blot analysis.


Ce6-PDT reduced the lipid content of cultured sebocytes. The inactivation of Akt, mTOR, Raptor, PPARγ and C/EBPα, as well as the activation of AMPK, were revealed to be the molecular signals associated with sebostatic modulation by Ce6-PDT.


Ce6-PDT using halogen light exerts antilipogenesis in sebocytes and may be utilized for the treatment of acne vulgaris.


Ce6 Photodynamic therapy Halogen light Sebocytes Anti-lipogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melnik, B. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by western diet. Dermatoendocrinol 4, 20–32 (2012).CrossRefGoogle Scholar
  2. 2.
    Suh, D. H. & Kwon, H. H. What’s new in the physiopathology of acne? Br J Dermatol 172, 13–19 (2015).CrossRefGoogle Scholar
  3. 3.
    Zouboulis, C. C. et al. What is the pathogenesis of acne? Exp Dermatol 14, 143–152 (2005).CrossRefGoogle Scholar
  4. 4.
    Williams, H. C., Dellavalle, R. P. & Garner, S. Acne vulgaris. Lancet 379, 361–372 (2012).CrossRefGoogle Scholar
  5. 5.
    Yoon, J. Y., Kwon, H. H., Min, S. U., Thiboutot, D. M. & Suh, D. H. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J Invest Dermatol 133, 429–440 (2013).CrossRefGoogle Scholar
  6. 6.
    Mourelatos, K., Eady, E. A., Cunliffe, W. J., Clark, S. M. & Cove, J. H. Temporal changes in sebum excretion and propionibacterial colonization in preadolescent children with and without acne. Br J Dermatol 156, 22–31 (2007).CrossRefGoogle Scholar
  7. 7.
    Ottaviani, M., Camera, E. & Picardo, M. Lipid mediators in acne. Mediators Inflamm 2010, 858176, doi: 10. 1155/2010/858176 (2010).CrossRefGoogle Scholar
  8. 8.
    Zouboulis, C. C., Jourdan, E. & Picardo, M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol Venereol 28, 527–532 (2014).CrossRefGoogle Scholar
  9. 9.
    Choi, J. J. et al. TNF-a increases lipogenesis via JNK and PI3K/Akt pathways in SZ95 human sebocytes. J Dermatol Sci 65, 179–188 (2012).CrossRefGoogle Scholar
  10. 10.
    McNairn, A. J. et al. TGFβ signaling regulates lipogenesis in human sebaceous glands cells. BMC Dermatol 13, 2, doi: 10.1186/1471-5945-13-2 (2013).CrossRefGoogle Scholar
  11. 11.
    Melnik, B. C. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol 8, 371–388, doi: 10.2147/CCID.S69135 (2015).CrossRefGoogle Scholar
  12. 12.
    Mirdamadi, Y. et al. Insulin and insulin-like growth factor-1 can modulate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in SZ95 sebocytes in vitro. Mol Cell Endocrinol 415, 32–44 (2015).CrossRefGoogle Scholar
  13. 13.
    Zouboulis, C. C., Angres, S. & Seltmann, H. Regulation of stearoyl-coenzyme A desaturase and fatty acid delta-6 desaturase-2 expression by linoleic acid and arachidonic acid in human sebocytes leads to enhancement of proinflammatory activity but does not affect lipogenesis. Br J Dermatol 165, 269–276 (2011).CrossRefGoogle Scholar
  14. 14.
    Jiang, S., Wang, W., Miner, J. & Fromm, M. Cross regulation of sirtuin 1, AMPK, and PPAR? in conjugated linoleic acid treated adipocytes. PLoS One 7, e48874, doi: 10.1371/journal.pone.0048874 (2012).CrossRefGoogle Scholar
  15. 15.
    Jang, J. et al. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Mol Med Rep 15, 4139–4147 (2017).CrossRefGoogle Scholar
  16. 16.
    Kim, S. Y., Hyun, M. Y., Go, K. C., Zouboulis, C. C. & Kim, B. J. Resveratrol exerts growth inhibitory effects on human SZ95 sebocytes through the inactivation of the PI3-K/Akt pathway. Int J Mol Med 35, 1042–1050 (2015).CrossRefGoogle Scholar
  17. 17.
    Savage, L. J. & Layton, A. M. Treating acne vulgaris: systemic, local and combination therapy. Expert Rev Clin Pharmacol 3, 563–580 (2010).CrossRefGoogle Scholar
  18. 18.
    Lucky, S. S., Soo, K. C. & Zhang, Y. Nanoparticles in photodynamic therapy. Chem Rev 115, 1990–2042 (2015).CrossRefGoogle Scholar
  19. 19.
    Jeon, Y. M. et al. Antimicrobial photodynamic therapy using chlorin e6 with halogen light for acne bacteria-induced inflammation. Life Sci 124, 56–63 (2015).CrossRefGoogle Scholar
  20. 20.
    Wang, Y. Y., Ryu, A. R., Jin, S., Jeon, Y. M. & Lee, M. Y. Chlorin e6-mediated photodynamic therapy suppresses P. acnes-induced inflammatory response via NF?B and MAPKs signaling pathway. PLoS One 12, e0170599, doi: 10.1371/journal.pone.0170599 (2017).Google Scholar
  21. 21.
    Ryu, A. R. & Lee, M. Y. Chlorin e6-mediated photodynamic therapy promotes collagen production and suppresses MMPs expression via modulating AP-1 signaling in P. acnes-stimulated HaCaT cells. Photodiagnosis Photodyn Ther 20, 71–77 (2017).CrossRefGoogle Scholar
  22. 22.
    Lee, S. E. et al. Effect of crotonaldehyde on the induction of COX-2 expression in human endothelial cells. Mol Cell Toxicol 13, 345–350 (2017).CrossRefGoogle Scholar
  23. 23.
    Kim, J. H., Ryu, A. R., Kang, M. J. & Lee, M. Y. Berberine-induced changes in protein expression and antioxidant enzymes in melanoma cells. Mol Cell Toxicol 12, 53–61 (2016).CrossRefGoogle Scholar
  24. 24.
    Smith, K. R. & Thiboutot, D. M. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res 49, 271–281 (2008).Google Scholar
  25. 25.
    Zouboulis, C. C., Schagen, S. & Alestas, T. The sebocyte culture: a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Arch Dermatol Res 300, 397–413 (2008).CrossRefGoogle Scholar
  26. 26.
    Masure, J., Bonnel, D., Stauber, J., Hunt, D. & Hofland, H. E. 528 DRM01, a novel, topical sebum inhibitor for the treatment of acne. J Invest Dermatol 136, S93, doi: 10.1016/j.jid.2016.02.566 (2016).CrossRefGoogle Scholar
  27. 27.
    Hunt, D. W. et al. Inhibition of sebum production with the acetyl coenzyme a carboxylase inhibitor Olumacostat Glasaretil. J Invest Dermatol 137, 1415–1423 (2017).CrossRefGoogle Scholar
  28. 28.
    Gupta, M., Mahajan, V. K., Mehta, K. S., Chauhan, P. S. & Rawat, R. Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the ‘future’ in dermatology therapeutics? Arch Dermatol Res 307, 767–780 (2015).CrossRefGoogle Scholar
  29. 29.
    Park, J. Y., Kim, Y., Im, J. A., You, S. & Lee, H. Inhibition of adipogenesis by oligonol through Akt-mTOR inhibition in 3T3-L1 adipocytes. Evid Based Complement Alternat Med 2014, 895272, doi: 10.1155/2014/895272 (2014).Google Scholar
  30. 30.
    Tuo, J. et al. ALA-PDT suppressing the cell growth and reducing the lipogenesis in human SZ95 sebocytes by mTOR signaling pathway in vitro. Photodiagnosis Photodyn Ther 18, 295–301 (2017).CrossRefGoogle Scholar
  31. 31.
    Laplante, M. & Sabatini, D. M. An emerging role of mTOR in lipid biosynthesis. Curr Biol 19, R1046–R1052 (2009).CrossRefGoogle Scholar
  32. 32.
    Park, J. & Jang, H. J. Anti-diabetic effects of natural products an overview of therapeutic strategies. Mol Cell Toxicol 13, 1–20 (2017).CrossRefGoogle Scholar
  33. 33.
    Cho, H. J., Park, J., Lee, H. W., Lee, Y. S. & Kim, J. B. Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 321, 942–948 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Medical ScienceSoonchunhyang UniversityChungnamRepublic of Korea
  2. 2.Daegu Cancer Center, Research and Development UnitDongSung Bio-Pharmaceuticals Co. Ltd.DaeguRepublic of Korea
  3. 3.Department of Medical BiotechnologySoonchunhyang UniversityChungnamRepublic of Korea

Personalised recommendations