Advertisement

Molecular & Cellular Toxicology

, Volume 15, Issue 1, pp 31–39 | Cite as

Hydraulic fracturing fluid biocide, tributyl tetradecyl phosphonium chloride, causes mitochondrial dysfunction that is enhanced by sodium chloride in Chironomus riparius

  • Zainab Hussain Alali
  • Carolyn S. Bentivegna
Original Paper

Abstract

Backgrounds

Tributyl tetradecyl phosphonium chloride (TTPC) is a biocide used in hydraulic fracturing fluid to minimize bacterial contamination.

Methods

This study used the larvae of the freshwater insect Chironomus riparius to investigate the toxicity of TTPC, NaCl, and TTPC+NaCl.

Results

LC50s (mg/L) at 24 hours for TTPC, NaCl, and TTPC+NaCl were 0.57, >10,000, and 0.32, respectively, indicating a synergistic effect for TTPC+NaCl. ATP production was significantly increased in response to TTPC alone as compared to controls, but decreased significantly when TTPC was combined with NaCl, indicating severe damage to mitochondria. Superoxide dismutase (SOD) activity and lipid hydroperoxides (LPO) levels both increased in response to TTPC treatment, however, only LPO activity increased when TTPC was combined with NaCl. Red laser stimulation failed to enhance ATP production in response to increasing concentrations of TTPC and TTPC+NaCl.

Conclusion

Taken together, these results indicate that hydraulic fracturing fluids entering freshwater ecosystems may put macroinvertebrates at risk.

Keywords

Tributyl tetradecyl phosphonium chloride Sodium chloride Hydraulic fracturing Mitochondria Chironomus riparius Red (cool) laser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burton, G. A. et al. Hydraulic “Fracking”: Are surface water impacts an ecological concern? ET&C 33, 1679–1689. doi:10.1002/etc.2619 (2014).Google Scholar
  2. 2.
    Ferrer, I. & Thurman, E. M. Chemical constituents and analytical approaches for hydraulic fracturing waters. TrEAC 5, 18–25. doi:10.1016/j.teac.2015.01.003 (2015).Google Scholar
  3. 3.
    Gordalla, B. C., Ewers, U. & Frimmel, F. H. Hydraulic fracturing: A toxicological threat for groundwater and drinking-water? Environmental Earth Sciences 70, 3875–3893. doi:10.1007/s12665-013-2672-9 (2013).CrossRefGoogle Scholar
  4. 4.
    Briskin, J. S. & Yohannes, L. Overview of U.S. EPA’s Study of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources. EPA, 197–203. doi:10.1021/bk-2015-1216.ch009 (2015).Google Scholar
  5. 5.
    Davies, J. Risk evaluation determining whether environmental emergency planning is required under the tributyl tetradecyl phosphonium chloride (CAS #: 81741-28-8). Japca 38, 1111–1113. doi:10.1080/08940630.1988.10466452 (1988).CrossRefGoogle Scholar
  6. 6.
    Kahrilas, G. A., Blotevogel, J., Stewart, P. S. & Borch, T. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol 49, 16–32. doi:10.1021/es503724k (2015).CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Stringfellow, W. T., Domen, J. K., Camarillo, M. K., Sandelin, W. L. & Borglin, S. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. J Hazard Mater 275, 37–54. doi:10.1016/j.jhazmat.2014.04.040 (2014).CrossRefGoogle Scholar
  9. 9.
    Kim, T. & Park, H. Tributyl tetradecyl phosphonium chloride for biofouling control in reverse osmosis processes. Desalination 372, 39–46. doi:10.1016/j.desal.2015.06.019 (2015).CrossRefGoogle Scholar
  10. 10.
    Xue, Y., Xiao, H. & Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. IJMS 16, 3626–3655. doi:10.3390/ijms16023626 (2015).CrossRefGoogle Scholar
  11. 11.
    Yoshimatsu, T. & Hiyama, K. Mechanism of the action of didecyldimethylammonium chloride (DDAC) against Escherichia coli and morphological changes of the cells. Biocontrol Sci 12, 93–99. doi:10.4265/bio.12.93 (2007).CrossRefGoogle Scholar
  12. 12.
    Pastor, M. M., Proft, M. & Pascual-Ahuir, A. Mitochondrial Function Is an Inducible Determinant of Osmotic Stress Adaptation in Yeast. JPC. doi: 10.1074/jbc.M109.050682 (2009).Google Scholar
  13. 13.
    Kwon, J., Kim, H., Kim, P. & Choi, K. Didecyldimethylammonium chloride induces oxidative stress and inhibits cell growth in lung epithelial cells. Mol Cell Toxicol 10, 41–45. doi:10.1007/s13273-014-0005-z (2014).CrossRefGoogle Scholar
  14. 14.
    Haluszczak, L. O., Rose, A. W. & Kump, L. R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Applied Geochemistry 28, 55–61. doi:10.1016/j.apgeochem.2012.10.002 (2013).CrossRefGoogle Scholar
  15. 15.
    Water and Wastes Digest. Pennsylvania DEP investigates elevated TDS in Monongahela River. https://doi.org/www.wwdmag.com/Pennsylvania-DEP-investigates-elevated-TDS-in-Monongahela-River (2008).
  16. 16.
    Chen, L. et al. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress. Ecotoxicol Environ Saf 122, 126–135. doi:10.1016/j.ecoenv.2015.07.011 (2015).CrossRefGoogle Scholar
  17. 17.
    Michailova, P. V. Rearrangements in chironomidae (Diptera) genomes induced by various environmental stress factors. Russian Journal of Genetics: Applied Research 1, 10–20. doi:10.1134/s2079059711010035 (2011).CrossRefGoogle Scholar
  18. 18.
    Nowak, C. Consequences of Environmental Pollution on Genetic Diversity in Populations of The Midge Chironomus riparius, Cuvillier Verlag Gottingen, Germany (2008).Google Scholar
  19. 19.
    Bianchini, L. F. et al. Metabolism and antioxidant defense in the larval chironomid Tanytarsus minutipalpus: adjustments to diel variations in the extreme conditions of Lake Magadi. BiO 6, 83–91. doi:10.1242/bio.021139 (2017).CrossRefGoogle Scholar
  20. 20.
    Siegel L. Hazard Identification for Human and Ecological Effects of Sodium Chloride Road Salt, TRB (2007).Google Scholar
  21. 21.
  22. 22.
    Avci, P. et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg, doi:10.1088/978-1-6270-5455-3ch8 (2013).Google Scholar
  23. 23.
    Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R. & Brand, M. D. Mitochondrial proton and electron leaks. Essays Biochem 47, 53–67. doi:10.1042/bse0470053 (2010).CrossRefGoogle Scholar
  24. 24.
    Syromyatnikov, M. Y., Kokina, A. V., Lopatin, A. V., Starkov, A. A. & Popov, V. N. Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.). PBP 135, 41–46. doi:10.1016/j.pestbp.2016.06.007 (2017).Google Scholar
  25. 25.
    Wiseman, S., Anderson, J., Liber, K. & Giesy, J. Endocrine disruption and oxidative stress in larvae of Chironomus dilutus following short-term exposure to fresh or aged oil sands process-affected water. Aquat Toxicol 142-143, 414–421. doi:10.1016/j.aquatox.2013.09.003 (2013).CrossRefGoogle Scholar
  26. 26.
    Michea, L., Combs, C., Andrews, P., Dmitrieva, N. & Burg, M. Mitochondrial dysfunction is an early event in high-NaCl-induced apoptosis of mIMCD3 cells. AJPRenal 282. doi:10.1152/ajprenal.00301.200 (2002).Google Scholar
  27. 27.
    Zheng, X., Long, W., Guo, Y. & Ma, E. Effects of cadmium exposure on lipid peroxidation and the antioxidant system in fourth-instar larvae of Propsilocerus akamusi (Diptera: Chironomidae) under laboratory conditions. J Econ Entomol 104, 827–832. doi:10.1603/ec10109 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Clinical Production Associate, Celgene Pharmaceutical CompanySeton Hall UniversitySouth OrangeUSA
  2. 2.Department of Biological SciencesSeton Hall UniversitySouth OrangeUSA

Personalised recommendations