Skip to main content
Log in

Overexpression of SIRT2 contributes tumor cell growth in hepatocellular carcinomas

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

The mammalian homolog of yeast Sir2 protein is the sirtuin family of histone deacetylases (HDACs), a NAD+-dependent protein deacetylase in humans. Accumulating evidence suggests that sirtuin 2 (SIRT2) co-localizes with the microtubule network and deacetylates α-tubulin, and is involved in various cellular processes including calorie restriction-dependent life span extension, mitotic cell cycle regulation, cellular apoptosis, DNA damage repair, and genomic silencing. However, the underlying mechanisms of action remains poorly understood, especially in hepatocarcinogenesis. Hence in this study, to determine the association between the aberrant expression of SIRT2 and liver cancer development and progression, SIRT2 expression was investigated in ten selected hepatocellular carcinoma (HCC) tissues and matched normal liver tissues, using RT-PCR and Western blot analysis. Next, SIRT2 was disrupted by siRNA-mediated protein knockdown method to investigate the biological role of SIRT2 in hepatocarcinogenesis in Hep3B cells. As a result, we identified that SIRT2 expression was significantly up-regulated in HCC tissues compared to corresponding normal liver tissues. In addition, suppression of SIRT2 caused regression of tumor cell growth and proliferation. We also found that SIRT2 could interact with α-tubulin and regulates the acetylation status of α-tubulin in Hep3B cells. In conclusion, we suggest that SIRT2 is aberrantly regulated in HCCs which may contribute to the mitogenic potential of tumor cells during the development and progression of HCC, and could be a novel molecular target for therapeutic intervention in liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruix, J., Boix, L., Sala, M. & Llovet, J. M. Focus on hepatocellular carcinoma. Cancer Cell 5:215–219 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Olsen, S. K., Brown, R. S. & Siegel, A. B. Hepatocellular carcinoma: review of current treatment with a focus on targeted molecular therapies. Therap Adv Gastroenterol 3:55–66 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Bosch, F. X., Ribes, J., Cleries, R. & Diaz, M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 9:191–211 (2005).

    Article  PubMed  Google Scholar 

  4. Yang, J. D. & Roberts, L. R. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol 7:448–458 (2010).

    Article  PubMed  Google Scholar 

  5. Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. J Cell Biochem 93:57–67 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Glozak, M. A. & Seto, E. Histone deacetylases and cancer. Oncogene 26:5420–5432 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Witt, O., Deubzer, H. E., Milde, T. & Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett 277:8–21 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. Longo, V. D. & Kennedy, B. K. Sirtuins in aging and age-related disease. Cell 126:257–268 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Kennedy, B. K., Smith, E. D. & Kaeberlein, M. The enigmatic role of Sir2 in aging. Cell 123:548–550 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Gorospe, M. & de Cabo, R. AsSIRTing the DNA damage response. Trends Cell Biol 18:77–83 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Haigis, M. C. & Guarente, L. P. Mammalian sirtuinsemerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Michan, S. & Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. North, B. J. et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22: 1168–1179 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Honore, S., Pasquier, E. & Braguer, D. Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62:3039–3056 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Dryden, S. C. et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23:3173–3185 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. Pandithage, R. et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 180:915–929 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. Vaquero, A. et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256–1261 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Black, J. C. et al. The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell 32:449–455 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Heltweg, B. et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66:4368–4377 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. Inoue, T., Hiratsuka, M., Osaki, M. & Oshimura, M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 6:1011–1018 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Milne, J. C. & Denu, J. M. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 12:11–17 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, Y. et al. Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun 386:729–733 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. Lavu, S., Boss, O., Elliott, P. J. & Lambert, P. D. Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7:841–853 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. Taylor, D. M., Maxwell, M. M., Luthi-Carter, R. & Kazantsev, A. G. Biological and potential therapeutic roles of sirtuin deacetylases. Cell Mol Life Sci 65: 4000–4018 (2008).

    Article  PubMed  CAS  Google Scholar 

  31. Schemies, J., Sippl, W. & Jung, M. Histone deacetylase inhibitors that target tubulin. Cancer Lett 280:222–232 (2009).

    Article  PubMed  CAS  Google Scholar 

  32. Saunders, L. R. & Verdin, E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26:5489–5504 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Peck, B. et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther 9:844–855 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Woo Nam.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H.J., Jung, K.H. & Nam, S.W. Overexpression of SIRT2 contributes tumor cell growth in hepatocellular carcinomas. Mol. Cell. Toxicol. 7, 367–374 (2011). https://doi.org/10.1007/s13273-011-0046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-011-0046-5

Keywords

Navigation