A multidisciplinary process for integrated rotorcraft design

  • Peter WeiandEmail author
  • Dominik Schwinn
  • Matthias Schmid
  • Michel Buchwald
Original Paper


This paper presents a new integrated design process for rotorcraft developed by German Aerospace Center (DLR). The fundamental features of this process are distributed computation on the servers of the different institutes, analysis tools with increasing physical fidelity along the progress of the design process and a high modularity inside the software framework. A reliable data exchange between the tools is provided by an extended version of DLRs Common Parametric Aircraft Configuration Schema. The tools cover the phases of conceptual and largely preliminary design. The design process is initialized by a statistical concept study, providing the first configuration for the following sizing and optimization task. The methods of the tools applied range from blade element theory over vortex panel theory, to finite element methods for structural sizing. The high modularity allows an easy integration of new abilities into the toolbox. The process and design environment presented here are the results of two DLR internal projects carried out by the Institute of Flight Systems, the Institute of Aerodynamics and Flow Technology and the Institute of Structures and Design.


Rotorcraft Flight performance Integrated design 

List of symbols


Speed of sound (m/s)


Thrust coefficient (–)

\(C_{{{\text{l}}\alpha }}\)

Lift curve slope (–)


Main rotor blade chord length (m)


Rotational energy (J)


Translational energy (J)


Gravitational acceleration (m/s2)

\(J_{\beta }\)

Blade flap moment of inertia (kg m2)

\(J_{\zeta }\)

Blade lag moment of inertia (kg m2)


Fuselage length (m)


Basic empty mass (kg)


Fuel mass (kg)


Maximum take-off mass (kg)


Operating empty mass (kg)


Operators mass (kg)


Payload mass (kg)


Mass of rotor blade (kg)


fuselage structural mass (kg)


Propulsion mass inclusive drivetrain (kg)


Structural mass (kg)


Systems mass (kg)


Main rotor tip Mach number (–)


Number of blades per main rotor (–)


Number of main rotors (–)


Induced power (W)


Maximum installed power (W)


Main rotor blade radius (m)


Flight range (m)


Rotor shaft spacing (m)


Main rotor thrust force (N)


Horizontal flight speed (m/s)


Main rotor tip speed (m/s)


Main rotor Lock number (–)


Overlapping factor (–)


Cut-out ratio of the rotor blade (–)


Advance ratio (–)


Main rotor blade aspect ratio (–)


Air density (kg/m3)


Rotor density of main rotor (–)


Rotor overlap fraction (–)


Main rotor rotational speed (rad/s)



US Army aeroflightdynamics directorate


Basic empty mass


Common parametric aircraft configuration schema


German aerospace center (Deutsches Zentrum für Luft-und Raumfahrt)


Evaluation and design of novel rotorcraft concepts


Finite element method


Fully stressed design


Helicopter overall simulation tool


Multidisciplinary design and optimization


Maximum take-off mass


Operating empty mass


Remote component environment


Rotorcraft integrated design and evaluation


Top level aircraft requirement



  1. 1.
    Raymer, D.P.: Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Reston (2006)Google Scholar
  2. 2.
    Nicolai, L., Carichner, G.: Fundamentals of Aircraft and Airship Design, vol. 1. American Institute of Aeronautics and Astronautics, Reston (2010)CrossRefGoogle Scholar
  3. 3.
    Layton, D.M.: Introduction to Helicopter Conceptual Design. American Institute of Aeronautics and Astronautics (AIAA) (1992)Google Scholar
  4. 4.
    Roskam, J.: Airplane Design. Design, Analysis and Research Corporation (DARcorporation), Lawrence (1985)Google Scholar
  5. 5.
    Johnson, W.: NDARC–NASA Design and Analysis of Rotorcraft, NASA/TP–2009-215402, 2009Google Scholar
  6. 6.
    Lawrence, B., Theodore, C., Johnson, W., Berger, T.: Handling qualities optimization for rotorcraft conceptual design. In: Rotorcraft Virtual Engineering Conference, Liverpool, UK, 8–10 Nov 2016Google Scholar
  7. 7.
    Basset, P.M., Tremolet, A., Cuzieux, F., Schulte, C., Tristrant, D., Lefebvre, T., Reboul, G., Richez, F., Burguburu, S., Petot, D., Paluch, B.: The C.R.E.A.T.I.O.N. project for rotorcraft concepts evaluation: the first steps. In: 37th European Rotorcraft Forum, Vergiate and Gallarate, 13–15 Sept 2011Google Scholar
  8. 8.
    Ries, T., Schimke, D.: Industrial prediction of helicopters in flight—interlinking simulation capabilities and tools of different complexity. In: Rotorcraft Virtual Engineering Conference, Liverpool, UK, 8–10 Nov 2016Google Scholar
  9. 9.
    Sinsay, J.: Reimagining rotorcraft advanced design. In: Rotorcraft Virtual Engineering Conference, Liverpool, UK, 8–10 Nov 2016Google Scholar
  10. 10.
    Basset, P.M., Beaumier, P., Rakotomamonjy, T.: CREATION: a numerical workshop for rotorcraft concepts generation and evaluation. In Rotorcraft Virtual Engineering Conference, Liverpool, UK, 8–10 Nov 2016Google Scholar
  11. 11.
    Weiand, P., Krenik, A.: A multidisciplinary toolbox for rotorcraft design. In: Rotorcraft Virtual Engineering Conference, Liverpool, UK, 8–10 Nov 2016Google Scholar
  12. 12.
    Bachmann, A., Kunde, M.: Advances in generalization and decoupling of software parts in a scientific simulation workflow system. In: The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences—ADVCOMP 2010, Florence, Italy, 25–30 Oct 2010Google Scholar
  13. 13.
    Litz, M., Seider, D., Bachmann, A., Kunde, M.: Integration framework for preliminary design tool chains. In: Deutscher Luft- und Raumfahrtkongress 2011, Bremen, Germany, 27–29 Sep 2011Google Scholar
  14. 14.
    Seider, D., Litz, M., Schreiber, A., Fischer, P. M., Gerndt, A.: Open Source Software Framework for Applications in Aeronautics and Space. In: IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 Mar 2012Google Scholar
  15. 15.
    Bachmann, A., Kunde, M., Litz, M., Schreiber, A., Bertsch, L.: Automation of aircraft pre-design using a versatile data transfer and storage format in a distributed computing environment. In: Third International Conference on Advanced Engineering Computing and Applications in Sciences—ADVCOMP 2009, Sliema, Malta, 11–16 Oct 2009Google Scholar
  16. 16.
    Liersch, C.M., Hepperle, M.: A distributed toolbox for multidisciplinary preliminary aircraft design. CEAS Aeronaut. J. 2(1–4), 57–68 (2011)CrossRefGoogle Scholar
  17. 17.
    Nagel, B., Kintscher, M., Streit, T.: Active and passive structural measures for aeroelastic winglet design. In: 26th international congress of the aeronautical sciences, Anchorage, Alaska, USA, 14–19 Sept 2008Google Scholar
  18. 18.
    Benoit, B., Kampa, K., von Grünhagen, W., Basset, P.-M., Gimonet, B.: HOST, a general helicopter simulation tool for Germany and France. In: American Helicopter Society 56th Annual Forum, Virginia Beach, VA, 2–4 May 2000Google Scholar
  19. 19.
    Krenik, A., Weiand, P.: Aspects on conceptual and preliminary helicopter design. In: Deutscher Luft- und Raumfahrtkongress 2016, Braunschweig, Germany, 13–15 Sept 2016Google Scholar
  20. 20.
    Johnson, W.: Rotorcraft Aeromechanics. Cambridge University Press, New York (2013)CrossRefGoogle Scholar
  21. 21.
    Johnson, W., Moodie, A., Yeo, H.: Design and performance of lift-offset rotorcraft for short-haul missions. In: American Helicopter Society Future Vertical Lift Aircraft Design Conference, San Francisco, CA, 18–20 Jan 2012Google Scholar
  22. 22.
    van der Wall, B.: Grundlagen der Hubschrauber-Aerodynamik. Springer, Berlin (2015)CrossRefGoogle Scholar
  23. 23.
    Powell, M.J.D.: A View of Algorithms for Optimization Without Derivatives, Cambridge (2007)Google Scholar
  24. 24.
    Kunze, P.: Parametric fuselage geometry generation and aerodynamic performance prediction in preliminary rotorcraft design. In: 39th European Rotorcraft Forum, Moscow, Russia, 3–6 Sept 2013Google Scholar
  25. 25.
    Nathman, J.K.: VSAERO—A Computer Program for Calculating the Nonlinear Aerodynamic Characteristics of Aritrary Configurations. User’s Manual, Version 7.2, Analytical Methods Inc. (2007)Google Scholar
  26. 26.
    Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A., La Rocca, G., Alonso, J.J.: Communication in aircraft design: can we establish a common language? In: 28th International Congress of the aeronautical Sciences, Brisbane, Australia, 23–28 Sept 2012Google Scholar
  27. 27.
    Böhnke, D.: Common Parametric Aircraft Configuration Schema (CPACS). V2.3,
  28. 28.
    Beltramo, M.N., Morris, M.A.: Parametric study of helicopter aircraft systems costs and weights, NASA-CR-152315 (1980)Google Scholar
  29. 29.
    Palasis, D.: Erstellung eines Vorentwurfsverfahrens für Hubschrauber mit einer Erweiterung für das Kipprotorflugzeug. Universität der Bundeswehr, München (1992)Google Scholar
  30. 30.
    Prouty, R.W.: Helicopter Performance, Stability, and Control. Krieger Publishing Company, New York (2002)Google Scholar
  31. 31.
    Russell, C., Basset, P.-M.: Conceptual design of environmentally friendly rotorcraft—a comparison of NASA and ONERA approaches. In: American Helicopter Society 71th Annual Forum, Virginia Beach, Virginia, USA, 5–7 May 2015Google Scholar
  32. 32.
    Scherer, J., Kohlgrüber, D., Dorbath, F., Sorour, M.: A Finite Element Based Tool Chain for Structural Sizing of Transport Aircraft in Preliminary Aircraft Design. In: Deutscher Luft- und Raumfahrtkongress, Stuttgart, Germany, 10–12 Sept 2013Google Scholar
  33. 33.
    Schwinn, D., Weiand, P., Schmid, M.: Structural Analysis of a Rotorcraft Fuselage in a Multidisciplinary Environment. In: NAFEMS World Congress, Stockholm, 11–14 June 2017Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.German Aerospace Center, DLRInstitute of Flight SystemsBrunswickGermany
  2. 2.German Aerospace Center, DLRInstitute of Structures and DesignStuttgartGermany
  3. 3.German Aerospace Center, DLRInstitute of Aerodynamics and Flow TechnologyBrunswickGermany

Personalised recommendations