Advertisement

Aircraft noise generation and assessment

Overall vehicle system noise: sonic boom
  • J. A. PageEmail author
  • A. Loubeau
Review Paper
  • 11 Downloads

Abstract

There has been a renewed interest globally in civil supersonic overland flight that has fostered numerous research and technology development activities. It is now possible to design a low-boom aircraft with a carefully tailored vehicle shape that controls the far field pressures and minimizes sonic booms on the ground. This section will describe recent international advances and cooperative research in sonic boom design, propagation modeling, and human-subjective response in preparation of potential international rule changes that will permit civil supersonic flight over land.

Keywords

Sonic boom Supersonic aircraft 

List of symbols

\(C_v^2\)

Turbulence structure parameter for velocity fluctuations

\(C_T^2\)

Turbulence structure parameter for temperature fluctuations

PL

Stevens Mark VII Perceived Level (dB) [1]

ASEL

A-weighted Sound Exposure Level (dB) [2, 3]

BSEL

B-weighted Sound Exposure Level (dB) [2, 3]

CSEL

C-weighted Sound Exposure Level (dB) [2, 3]

DSEL

D-weighted Sound Exposure Level (dB) [2, 3]

ESEL

E-weighted Sound Exposure Level (dB) [2, 3]

ISBAP

Indoor Sonic Boom Annoyance Predictor (dB) [4]

Abbreviations

ABBA

Airborne Blimp Boom Acquisition System

ADS-B

Automatic Dependent Surveillance-Broadcast

AFRC

Armstrong Flight Research Center

AIAA

American Institute of Aeronautics and Astronautics

ASCENT

Aviation Sustainability Center–FAA Center of Excellence for Alternative Jet Fuels and Environment

BASS

Boom Amplitude and Shape Sensor

CFD

Computational Fluid Dynamics

CISBoomDA

Cockpit Interactive Sonic Boom Display Avionics

cRIO

National Instruments CompactRIO

D-SEND

Drop test for Simplified Evaluation of Non-symmetrically Distributed sonic boom

DARPA

Defense Advanced Research Projects Agency (United States)

DFRC

Dryden Flight Research Center

FAA

Federal Aviation Administration (United States)

FaINT

Farfield Investigation of No-boom Thresholds

FIR

Finite Impulse Response filters

GIS

Graphical Information System

HSCT

High Speed Civil Transport

HSR

High Speed Research

ICAO

International Civil Aviation Organization

IER

Interior Effects Room

JAXA

Japan Aerospace eXploration Agency

LBFD

Low Boom Flight Demonstration

L/D

Aircraft Lift-to-Drag ratio

MDAO

Multidisciplinary Design Analysis and Optimization

NASA

National Aeronautics and Space Administration (United States)

N + 2

Small airliner concept (second generation supersonic airplane)

QueSST

Quiet SuperSonic Technology aircraft

SBUDAS

Sonic Boom Unattended Data Acquisition System

SCAMP

Superboom Caustic Analysis and Measurement Program

SSBD

Shaped Sonic Boom Demonstrator

SSBJ

SuperSonic Business Jet

SST

SuperSonic Transport

TOGW

Takeoff Gross Weight

WSPR

Waveform and Sonicboom Perception and Response program

WSPRRR

Waveform and Sonicboom Perception and Response Risk Reduction program

Notes

Acknowledgements

The authors would like to thank the following individuals and organizations for contributing to the development and review of this paper: Yoshikazu Makino, Japan Aerospace Exploration Agency (JAXA); John Morgenstern, Lockheed Martin; Jason Matisheck, Aerion Corporation; Robert Downs, Volpe US National Transportation Systems Center; Robbie Cowart, Gulfstream Aerospace Corporation; Domenic J. Maglieri, Eagle Aeronautics; and Kevin P. Shepherd, Randolph H. Cabell, and Jacob Klos, NASA.

References

  1. 1.
    Stevens, S.S.: Perceived level of noise by Mark VII and decibels (E). J. Acoust. Soc. Am. 51, 575–601 (1972)CrossRefGoogle Scholar
  2. 2.
    ANSI: American National Standard acoustical terminology. ANSI S1.1-2013 (2013)Google Scholar
  3. 3.
    ANSI: American National Standard design response of weighting networks for acoustical measurements. ANSI S1.42-2001(R2016) (2016)Google Scholar
  4. 4.
    Loubeau, A.: Evaluation of the effect of aircraft size on indoor annoyance caused by sonic booms. J. Acoust. Soc. Am. 136, 2223–2224 (2014)CrossRefGoogle Scholar
  5. 5.
    International Civil Aviation Organization: Assembly resolutions in force (as of 6 October 2016), Doc 10075, Res A39-1, App. G (2016)Google Scholar
  6. 6.
    International Civil Aviation Organization: On board a sustainable future, 2016 Environmental Report, Aviation and Climate Change (2016)Google Scholar
  7. 7.
    Maglieri, D., Bobbit, P.J., Plotkin, K.J., Shepherd, K.P., Coen, P.G., Richwine, D.M.: Sonic boom. Six decades of research. Technical Report NASA/SP-2014-622, NASA (2014)Google Scholar
  8. 8.
    SOBER: SOnic Boom European Research programme: numerical and laboratory-scale experimental simulation. Final technical report, Project no. GRD1-2000-25189 (2004)Google Scholar
  9. 9.
    HISAC: Environmentally friendly high speed aircraft. Final technical report, HISAC-T-6-26-1 (2008)Google Scholar
  10. 10.
    ATLLAS: Aerodynamic and Thermal Load interactions with Lightweight Advanced materials for high Speed flight. Final public report: Objectives and achievements for the ATLLAS project, AST5-CT-2006-030729 (2010)Google Scholar
  11. 11.
    ATLLASII: Aero-Thermodynamic Loads on Lightweight Advanced Structures II. Project final report, ACP0-GA-2010-263913 (2015)Google Scholar
  12. 12.
    Benson, L.R.: Quieting the boom: the Shaped Sonic Boom Demonstrator and the quest for quiet supersonic flight ( NASA) (2013)Google Scholar
  13. 13.
    Plotkin, K., Haering, E., Murray, J., Maglieri, D., Salamone, J., Sullivan, B., Schein, D.: Ground data collection of shaped sonic boom experiment aircraft pressure signatures, In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-10 (2005)Google Scholar
  14. 14.
    Cowart, R., Grindle, T.: An overview of the Gulfstream/NASA Quiet SpikeTM flight test program, In: 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-123 (2008)Google Scholar
  15. 15.
    Honda, M., Yoshida, K.: D-SEND#2 flight demonstration for low sonic boom design technology. In: 29th Congress of the International Council of the Aeronautical Sciences, AIAA2017-0279 (2016)Google Scholar
  16. 16.
    George, A.R.: Reduction of sonic boom by azimuthal redistribution of overpressure. AIAA J. 7, 291–298 (1969)CrossRefGoogle Scholar
  17. 17.
    Seebass, R.: Minimum sonic boom shock strengths and overpressures. Nature 221, 651–653 (1969)CrossRefGoogle Scholar
  18. 18.
    George, A.R., Seebass, R.: Sonic boom minimization including both front and rear shocks. AIAA J. 9, 2091–2093 (1971)CrossRefGoogle Scholar
  19. 19.
    Howe, D.: Engine placement for sonic boom mitigation. In: 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2002-0148 (2002)Google Scholar
  20. 20.
    Conners, T., Howe, D.: Supersonic inlet shaping for dramatic reductions in drag and sonic boom strength. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-0030 (2006)Google Scholar
  21. 21.
    Conners, T., Merret, J., Howe, D., Tacina, K., Hirt, S.: Wind tunnel testing of an axisymmetric isentropic relaxed external compression inlet at Mach 1.97 design speed. In: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2007-5066 (2007)Google Scholar
  22. 22.
    Howe, D.: Hybrid CART3D/OVERFLOW near-field analysis of a low boom configuration with wind tunnel comparisons. In: 29th AIAA Applied Aerodynamics Conference, AIAA 2011-3336 (2011)Google Scholar
  23. 23.
    Hirt, S., Chima, R., Vyas, M., Wayman, T., Conners, T., Reger, R.: Experimental investigation of a large-scale low-boom inlet concept. In: 29th AIAA Applied Aerodynamics Conference, AIAA 2011-3796 (2011)Google Scholar
  24. 24.
    Conners, T., Wayman, T.: The feasibility of high-flow nacelle bypass for low sonic boom propulsion system design. In: 29th AIAA Applied Aerodynamics Conference, AIAA 2011-3797 (2011)Google Scholar
  25. 25.
    Ordaz, I., Geiselhart, K.A., Fenbert, J.W.: Conceptual design of low-boom aircraft with flight trim requirement. J. Aircraft. 52, 932–939 (2015)CrossRefGoogle Scholar
  26. 26.
    Ordaz, I., Wintzer, M., Rallabhandi, S.K.: Full-carpet design of a low-boom demonstrator concept. In: 33rd AIAA Applied Aerodynamics Conference, AIAA AVIATION Forum, AIAA 2015-2261 (2015)Google Scholar
  27. 27.
    Rallabhandi, S.K.: Advanced sonic boom prediction using the augmented Burgers equation. J. Aircraft 48, 1245–1253 (2011)CrossRefGoogle Scholar
  28. 28.
    Rallabhandi, S.K.: Application of adjoint methodology in various aspects of sonic boom design. In: 32nd AIAA Applied Aerodynamics Conference, AIAA AVIATION Forum, AIAA 2014-2271 (2014)Google Scholar
  29. 29.
    Henne, P.A.: Case for small supersonic civil aircraft. J. Aircraft 42, 765–774 (2005)CrossRefGoogle Scholar
  30. 30.
    Howe, D.: Improved sonic boom minimization with extendable nose spike. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-1014 (2005)Google Scholar
  31. 31.
    Coen, P.: An overview of NASA’s Commercial Supersonic Technology project. In: AIAA Aviation (2016)Google Scholar
  32. 32.
    Aerion (2017). http://www.aerionsupersonic.com. Accessed 05 May 2017
  33. 33.
    Boom (2017). https://www.boomsupersonic.com. Accessed 10 July 2017
  34. 34.
    Matisheck, J.: The Aerion AS2 and Mach cut-off. J. Acoust. Soc. Am. 141, 3564 (2017)CrossRefGoogle Scholar
  35. 35.
    Tracy, R.R.: High efficiency, supersonic aircraft, US Patent No. 5322242Google Scholar
  36. 36.
    Frederick, M.A., Banks, D., Garzon, G., Matisheck, J.: Flight tests of a supersonic natural laminar flow airfoil. In: 16th International Symposium on Flow Visualization (2014)Google Scholar
  37. 37.
    Welge, H.R., Bonet, J., Magee, T., Chen, D., Hollowell, S., Kutzmann, A., Mortlock, A., Stengle, J., Nelson, C., Adamson, E., Baughcum, S., Britt, R.T., Miller, G., Tai, J.: N + 2 supersonic concept development and systems integration. Technical Report NASA/CR-2010-216842, NASA (2010)Google Scholar
  38. 38.
    Morgenstern, J., Norstrud, N., Sokhey, J., Martens, S., Alonso, J.J.: Advanced concept studies for supersonic commercial transports entering service in the 2018 to 2020 period - Phase I final report. Technical Report NASA/CR-2013-217820, NASA (2013)Google Scholar
  39. 39.
    National Oceanic and Atmospheric Administration: National Aeronautics and Space Administration, United States Air Force, U.S. standard atmosphere, 1976. Technical Report NASA-TM-X-74335, NOAA-S/T-76-1562, NASA (1976)Google Scholar
  40. 40.
    Perley, R.: Design and demonstration of a system for routine, boomless, supersonic flights. Technical Report FAA-RD-77-72, FAA (1977)Google Scholar
  41. 41.
    Cliatt, L.J., Hill, M.A., Haering, E.: Mach cutoff analysis and results from NASA’s farfield investigation of no-boom thresholds. In: 22nd AIAA/CEAS Aeroacoustics Conference, AIAA 2016-3011 (2016)Google Scholar
  42. 42.
    Haering, E.A., Smolka, J.W., Murray, J.E., Plotkin, K.J.: Flight demonstration of low overpressure N-wave sonic booms and evanescent waves, In: AIP Conference Proceedings, 838, 647–650 (2005)Google Scholar
  43. 43.
    Chudoba, B., Coleman, G., Roberts, K., Mixon, B., Mixon, B., Oza, A., Czysz, P.: What price supersonic speed? A design anatomy of supersonic transportation Part 1. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2007-851 (2007)Google Scholar
  44. 44.
    Liebhardt, B., Linke, F., Dahlmann, K.: Supersonic deviations: assessment of sonic-boom-restricted flight routing. J. Aircraft 51, 1987–1996 (2014)CrossRefGoogle Scholar
  45. 45.
    Plotkin, K.J., Matischeck, J.R., Tracy, R.R.: Sonic boom cutoff across the United States. In: 14th AIAA/CEAS Aeroacoustics Conference, AIAA 2008-3033 (2005)Google Scholar
  46. 46.
    Hayes, W.D., Haefeli, R., Kulsrud, H.: Sonic boom propagation in a stratified atmosphere with computer program. Technical Report CR-1299, NASA (1968)Google Scholar
  47. 47.
    Haefeli, R.C.: Effects of atmosphere, wind, and aircraft maneuvers on sonic boom signatures. Technical Report CR-66756, NASA (1969)Google Scholar
  48. 48.
    Hayes, W.D., Runyan, H.L.: Sonic boom propagation through a stratified atmosphere. J. Acoust. Soc. Am. 51, 695–701 (1972)CrossRefGoogle Scholar
  49. 49.
    Blumrich, R., Coulouvrat, F., Heimann, D.: Meteorologically induced variability of sonic-boom characteristics of supersonic aircraft in cruising flight. J. Acoust. Soc. Am. 118, 707–722 (2005)CrossRefGoogle Scholar
  50. 50.
    Coulouvrat, F.: Numerical simulation of sonic boom. In: CFA/DAGA ’04 (2004)Google Scholar
  51. 51.
    Loubeau, A., Coulouvrat, F.: Effects of meteorological variability on sonic boom propagation from hypersonic aircraft. AIAA J. 47, 2632–2641 (2009)CrossRefGoogle Scholar
  52. 52.
    Salamone, J., Sparrow, V.W.: A sonic boom propagation model including mean flow atmospheric effects. In: AIP Conference Proceedings, volume 1474, 311 (2012)Google Scholar
  53. 53.
    Page, J.A., Plotkin, K.J.: An efficient method for incorporating computational fluid dynamics into sonic boom prediction. LMBoom is a sonic boom propagation code developed by Lockheed Martin using the method from paper AIAA-91-3275. In: 9th AIAA Applied Aerodynamics Conference, AIAA 91-3275 (1991)Google Scholar
  54. 54.
    Morgenstern, J.M., Creasman, F., Hudson, M.: STAD: Supersonic Transport Aerodynamic Design Theory and user’s guide, v1.0. Technical Report, Lockheed Martin Aeronautics Company (1999)Google Scholar
  55. 55.
    Plotkin, K.J.: Calculation of sonic boom from numerical flow-field solutions: MDBOOM version 2.2. Technical Report WR 92-14, Wyle (1992)Google Scholar
  56. 56.
    Plotkin, K.J., Page, J.A.: MDBOOM and MDPlot computer programs for sonic boom analysis and design. Technical Report WR 02-02, Wyle (2002)Google Scholar
  57. 57.
    Plotkin, K.J., Downing, J.M., Page, J.A.: USAF single event sonic boom prediction model: PCBoom. Technical Report AL/OE-TR-1997-0003, Brooks AFB (1997)Google Scholar
  58. 58.
    Page, J.A., Plotkin, K.J., Wilmer, C.: PCBoom version 6.6 technical reference and user manual. Technical Report WR 10-10, Wyle (2010)Google Scholar
  59. 59.
    Bass, H.E., Raspet, R.: Vibrational relaxation effects on the atmospheric attenuation and rise times of explosion waves. J. Acoust. Soc. Am. 64, 1208–1210 (1978)CrossRefGoogle Scholar
  60. 60.
    Bass, H.E., Ezell, J., Raspet, R.: Effect of vibrational relaxation on rise times of shock waves in the atmosphere. J. Acoust. Soc. Am. 74, 1514–1517 (1983)CrossRefGoogle Scholar
  61. 61.
    Bass, H.E., Layton, B.A., Bolen, L.N., Raspet, R.: Propagation of medium strength shock waves through the atmosphere. J. Acoust. Soc. Am. 82, 306–310 (1987)CrossRefGoogle Scholar
  62. 62.
    Cleveland, R.O., Hamilton, M.F., Blackstock, D.T.: Time domain modeling of finite-amplitude sound in relaxing fluids. J. Acoust. Soc. Am. 99, 3312–3318 (1996)CrossRefGoogle Scholar
  63. 63.
    Taylor, A.D.: The TRAPS sonic boom program. Technical Report ERL ARL-87. NOAA (1980)Google Scholar
  64. 64.
    Yamamoto, M., Hashimoto, A., Aoyama, T., Sakai, T.: A unified approach to an augmented Burgers equation for the propagation of sonic booms. J. Acoust. Soc. Am. 137, 1857–1866 (2015)CrossRefGoogle Scholar
  65. 65.
    Robinson, L.D.: Sonic boom propagation through an inhomogeneous windy atmosphere. Ph.D. thesis, The University of Texas at Austin (1991)Google Scholar
  66. 66.
    Robinson, L.D.: A numerical model for sonic boom propagation through an inhomogeneous, windy atmosphere. Technical Report NASA/CP-3172, NASA (1992)Google Scholar
  67. 67.
    Auger, T., Coulouvrat, F.: Numerical simulation of sonic boom focusing. AIAA J. 40, 1726–1734 (2002)CrossRefGoogle Scholar
  68. 68.
    Coulouvrat, F.: Sonic boom propagation in the shadow zone: a geometrical theory of diffraction. J. Acoust. Soc. Am. 111, 499–508 (2002)CrossRefGoogle Scholar
  69. 69.
    Coulouvrat, F.: Théorie géométrique non linéaire de la diffraction en zone d’ombre [Nonlinear geometrical theory of diffraction in the shadow zone]. C. R. Acad. Sci. Ser. IIb: Mec. Phys. Chim. Astron. 325, 69–75 (1997)zbMATHGoogle Scholar
  70. 70.
    Salamone III, J.A.: Solution of the Lossy Nonlinear Tricomi Equation with application to sonic boom focusing. Ph.D. thesis, The Pennsylvania State University (2013). https://etda.libraries.psu.edu/catalog/19710. Accessed 28 Feb 2019
  71. 71.
    Salamone III, J.A., Sparrow, V.W., Plotkin, K.J.: Solution of the Lossy Nonlinear Tricomi Equation applied to sonic boom focusing. AIAA J. 51, 1745–1754 (2013)CrossRefGoogle Scholar
  72. 72.
    Page, J.A., Plotkin, K., Hobbs, C., Sparrow, V., Salamone, J., Cowart, R., Salamone, J., Elmer, K., Welge, H.R., Ladd, J., Maglieri, D., Piacsek, A.: Superboom Caustic Analysis and Measurement Program (SCAMP) final report. Technical Report NASA-CR-2015-218871, NASA (2015)Google Scholar
  73. 73.
    Piacsek, A.A.: Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts. J. Acoust. Soc. Am. 111, 520–529 (2002)CrossRefGoogle Scholar
  74. 74.
    Piacsek, A.A., Plotkin, K.J.: SCAMP: Application of Nonlinear Progressive-wave Equation to sonic boom transition focus. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2013-1064 (2013)Google Scholar
  75. 75.
    Page, J.A., Plotkin, K.J., Haering, E.A., Maglieri, D.J., Cowart, R., Salamone, J., Elmer, K., Welge, B., Ladd, J.: SCAMP: Superboom Caustic Analysis and Measurement Project overview. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2013-0930 (2013)Google Scholar
  76. 76.
    Page, J.A., Hobbs, C.M., Haering, E.A., Maglieri, D.J., Shupe, R.S., Hunting, C., Giannakis, J.M., Wiley, S., Houtas, F.: SCAMP: Focused sonic boom experiment execution and measurement data acquisition. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2013-0933 (2013)Google Scholar
  77. 77.
    Rizzi, S.A.: Toward reduced aircraft community noise impact via a perception-influenced design approach. In: InterNoise16, pp 220–244 (2016)Google Scholar
  78. 78.
    Klos, J., Sullivan, B.M., Shepherd, K.P.: Design of an indoor sonic boom simulator at NASA Langley Research Center. In: Noise-Con (2013)Google Scholar
  79. 79.
    Kanamori, M., Takahashi, T., Makino, Y.: Effect of low-boom waveform on focus boom using lossy nonlinear Tricomi analysis. AIAA J. 55, 2029–2042 (2017)CrossRefGoogle Scholar
  80. 80.
    Plotkin, K.J.: State of the art of sonic boom modeling. J. Acoust. Soc. Am. 111, 530–536 (2002)CrossRefGoogle Scholar
  81. 81.
    Blanc-Benon, P., Lipkens, B., Dallois, L., Hamilton, M., Blackstock, D.: Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic equation. J. Acoust. Soc. Am. 111, 487–498 (2002)CrossRefGoogle Scholar
  82. 82.
    Yuldashev, P.V., Ollivier, S., Khokhlova, V.A., Blanc-Benon, P.: Statistical properties of nonlinear N-wave propagating in thermal or kinematic turbulence. Proc. Mtgs. Acoust. 19, 045074 (2013)CrossRefGoogle Scholar
  83. 83.
    Luquet, D., Marchiano, R., Coulouvrat, F.: 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium. In: AIP Conference Proceedings, volume 1685, 070010 (2015)Google Scholar
  84. 84.
    Wilson, D.K.: A turbulence spectral model for sound propagation in the atmosphere that incorporates shear and buoyancy forcings. J. Acoust. Soc. Am. 108, 2021–2038 (2000)CrossRefGoogle Scholar
  85. 85.
    Coulouvrat, F., Luquet, D., Marchiano, R.: Numerical model of sonic boom in 3D kinematic turbulence. In: AIP Conference Proceedings, volume 1685, 090003 (2015)Google Scholar
  86. 86.
    Cotté, B., Blanc-Benon, P.: Estimates of the relevant turbulent scales for acoustic propagation in an upward refracting atmosphere. Acta Acust. United Ac. 93, 944–958 (2007)Google Scholar
  87. 87.
    Lipkens, B., Blackstock, D .T.: Model experiment to study sonic boom propagation through turbulence. Part I: general results. J. Acoust. Soc. Am. 103, 148–158 (1998)CrossRefGoogle Scholar
  88. 88.
    Ollivier, S., Salze, E., Blanc-Benon, P.: Propagation of N-waves in a turbulent and refracting atmosphere with ground effects (laboratory-scale experiment). Proc. Mtgs. Acoust. 19, 045072 (2013)CrossRefGoogle Scholar
  89. 89.
    Salze, E., Yuldashev, P., Ollivier, S., Khokhlova, V., Blanc-Benon, P.: Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence. J. Acoust. Soc. Am. 136, 556–566 (2014)CrossRefGoogle Scholar
  90. 90.
    Averiyanov, M., Ollivier, S., Khokhlova, V., Blanc-Benon, P.: Random focusing of nonlinear acoustic N-waves in fully developed turbulence: laboratory scale experiment. J. Acoust. Soc. Am. 130, 3595–3607 (2011)CrossRefGoogle Scholar
  91. 91.
    Plotkin, K.J., Maglieri, D.J., Sullivan, B.M.: Measured effects of turbulence on the loudness and waveforms of conventional and shaped minimized sonic booms. In: 11th AIAA/CEAS Aeroacoustics Conference, AIAA 2005-2949 (2005)Google Scholar
  92. 92.
    Kanamori, M., Takahashi, T., Naka, Y., Makino, Y., Takahashi, H., Ishikawa, H.: Numerical evaluation of effect of atmospheric turbulence on sonic boom observed in D-SEND#2 flight test. In: 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA 2017-0278 (2017)Google Scholar
  93. 93.
    Locey, L.L.: Sonic boom postprocessing functions to simulate atmospheric turbulence effects. Ph.D. thesis, The Pennsylvania State University (2008)Google Scholar
  94. 94.
    Rozanova-Pierrat, A.: On the derivation of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media. Commun. Math. Sci. 7, 679–718 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Averiyanov, M., Blanc-Benon, P., Cleveland, R.O., Khokhlova, V.: Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media. J. Acoust. Soc. Am. 129, 1760–1772 (2011)CrossRefGoogle Scholar
  96. 96.
    Naka, Y., Makino, Y., Shindo, S., Kawakami, H.: Aerial and ground measurement of sonic booms in D-SEND#1 and ABBA test#2-2 flight tests. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise12, 3125–3135 (2012)Google Scholar
  97. 97.
    Naka, Y., Shindo, S., Makino, Y., Kawakami, H.: Systems and methods for aerial and ground-based sonic boom measurement. Technical Report JAXA-RR-13-001E, JAXA (2013)Google Scholar
  98. 98.
    Yoshikazu Makino (JAXA) (2017). Personal communicationGoogle Scholar
  99. 99.
    Takahashi, H., Kanamori, M., Naka, Y., Makino, Y.: Statistical characterization of atmospheric turbulence behavior responsible for sonic boom waveform deformation. AIAA J. 56, 673–686 (2018)CrossRefGoogle Scholar
  100. 100.
    Cliatt, L.J., Haering, E.A., Arnac, S.R., Hill, M.A.: Lateral cutoff analysis and results from NASA’s Farfield Investigation of No-boom Thresholds. Technical Report NASA/TM-2016-218850, NASA (2016)Google Scholar
  101. 101.
    Sparrow, V., Tai, J., Vigeant, M., Page, J., Bailey, M.: Acoustic model of Mach cut-off flight. Project 42, FAA Aviation Sustainability Center (ASCENT) (2017)Google Scholar
  102. 102.
    Huang, Z., Sparrow, V.W.: Preliminary assessment and extension of an existing Mach cut-off model. J. Acoust. Soc. Am. 141, 3564 (2017)CrossRefGoogle Scholar
  103. 103.
    Busch, G., Tai, J., Mavris, D., Duca, R., Mohan, R.: Sensitivity analysis of supersonic Mach cut-off flight. J. Acoust. Soc. Am. 141, 3565 (2017)CrossRefGoogle Scholar
  104. 104.
    Bailey, M., Kreider, W., Dunmire, B., Khokhlova, V., Sapozhnikov, O., Simon, J.C., Sparrow, V.: Laboratory test bed for sonic boom propagation. J. Acoust. Soc. Am. 141, 3565 (2017)CrossRefGoogle Scholar
  105. 105.
    Klos, J., Buehrle, R.D.: Vibro-acoustic response of buildings due to sonic boom exposure: June 2006 field test. Technical Report NASA/TM-2007-214900, NASA (2007)Google Scholar
  106. 106.
    Klos, J.: Vibro-acoustic response of buildings due to sonic boom exposure: July 2007 field test. Technical Report NASA/TM-2008-215349, NASA (2008)Google Scholar
  107. 107.
    Loubeau, A.: Recent progress on sonic boom research at NASA. Proc. Internoise 12, 3760–3770 (2012)Google Scholar
  108. 108.
    Remillieux, M.C., Burdisso, R.A., Reichard, G.: Transmission of sonic booms into a rectangular room with a plaster-wood wall using a modal-interaction model. J. Sound Vib. 327, 529–556 (2009)CrossRefGoogle Scholar
  109. 109.
    Harne, R.L., Blanc, C., Remillieux, M.C., Burdisso, R.A.: Structural-acoustic aspects in the modeling of sandwich structures and computation of equivalent elasticity parameters. Thin Walled Struct. 56, 1–8 (2012)CrossRefGoogle Scholar
  110. 110.
    Svensson, P., (2017). http://www.iet.ntnu.no/~svensson/software/. Accessed 11 July 2017
  111. 111.
    Klos, J.: Effects of model fidelity on indoor sonic boom exposure estimates. J. Acoust. Soc. Am. 141, 3624 (2017)CrossRefGoogle Scholar
  112. 112.
    Klos, J.: Sonic boom noise exposure inside homes. J. Acoust. Soc. Am. 136, 2223 (2014)CrossRefGoogle Scholar
  113. 113.
    Klos, J.: Estimates of residential floor vibration induced by sonic booms. J. Acoust. Soc. Am. 139, 2007 (2016)CrossRefGoogle Scholar
  114. 114.
    Kim, B.S., Sparrow, V.W.: Comparison of finite element models for residential building walls and low frequency sound transmission. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 246, pp. 185–191 (Institute of Noise Control Engineering) (2013)Google Scholar
  115. 115.
    Cho, S.-I. T.: Finite-difference time-domain modeling of low-amplitude sonic boom diffraction around building structures. Ph.D. thesis, The Pennsylvania State University (2013). https://etda.libraries.psu.edu/catalog/17472. Accessed 28 Feb 2019
  116. 116.
    Riegel, K. A.: Propagation of sonic booms in urban landscapes. Ph.D. thesis, The Pennsylvania State University (2011). https://etda.libraries.psu.edu/catalog/13881. Accessed 28 Feb 2019
  117. 117.
    Cho, S.-I.T., Sparrow, V.W.: Diffraction of sonic booms around buildings resulting in the building spiking effect. J. Acoust. Soc. Am. 129, 1250–1260 (2011)CrossRefGoogle Scholar
  118. 118.
    Rouse, J.W.: The significance of edge diffraction in sonic boom propagation within urban environments. J. Acoust. Soc. Am. 136, 2223 (2014)CrossRefGoogle Scholar
  119. 119.
    Rouse, J.W., Klos, J.: Interaction of sonic booms with buildings. NASA Acoustics Technical Working Group Meeting (2016)Google Scholar
  120. 120.
    Henríquez, V.C., Juhl, P.M.: OpenBEM - An open source Boundary Element Method software in acoustics. In: INTER-NOISE and NOISE-CON congress and conference proceedings, pp. 5873–5882 (2010)Google Scholar
  121. 121.
    Park, M.A., Morgenstern, J.M.: Summary and statistical analysis of the first AIAA sonic boom prediction workshop. J. Aircraft 53, 578–598 (2016)CrossRefGoogle Scholar
  122. 122.
    Park, M.A., Nemec, M.: Near field summary and statistical analysis of the second AIAA sonic boom prediction workshop. In: 35th AIAA Applied Aerodynamics Conference, AIAA AVIATION Forum, AIAA 2017-3256 (2017)Google Scholar
  123. 123.
    Rallabhandi, S.K., Loubeau, A.: Propagation summary of the second AIAA sonic boom prediction workshop. In: 35th AIAA Applied Aerodynamics Conference, AIAA AVIATION Forum, AIAA 2017-3257 (2017)Google Scholar
  124. 124.
    Haering, E.A.: Real-time, interactive sonic boom display. US Patent No. 8145366 (2012)Google Scholar
  125. 125.
    Doebler, W., Sparrow, V.W.: The minimum number of ground measurements required for narrow sonic boom metric confidence intervals. J. Acoust. Soc. Am. 141, 3625 (2017)CrossRefGoogle Scholar
  126. 126.
    Cook, B., Hobbs, C.M., Page, J., Salamone, J.: Objective data collection and analysis for the waveform and Sonicboom perception and response program. J. Acoust. Soc. Am. 133, 3369 (2013)CrossRefGoogle Scholar
  127. 127.
    Nixon, C.W., Borsky, P.N.: Effects of sonic boom on people: St. Louis, Missouri, 1961–1962. J. Acoust. Soc. Am. 39, S51–S58 (1966)Google Scholar
  128. 128.
    Borsky, P.N.: Community reactions to sonic booms in the Oklahoma City area. Technical Report AMRL-TR-65-37, AMRL (1965)Google Scholar
  129. 129.
    Bremond, J.: Reaction of the French population to the supersonic bang. Technical Report NASA-TM-75487, NASA (1980)Google Scholar
  130. 130.
    National Sonic Boom Evaluation Office, Sonic boom experiments at Edwards Air Force Base. Technical Report NSBEO 1-67, (Contract AF 49(638)-1758) Stanford Research Institute (1967)Google Scholar
  131. 131.
    Fields, J.M.: Reactions of residents to long-term sonic boom noise environments. Technical Report CR-201704, NASA (1997)Google Scholar
  132. 132.
    Miller, D. M.: Human response to low-amplitude sonic booms. Ph.D. thesis, The Pennsylvania State University (2011). https://etda.libraries.psu.edu/catalog/11175. Accessed 28 Feb 2019
  133. 133.
    Loubeau, A., Rathsam, J., Klos, J.: Evaluation of an indoor sonic boom subjective test facility at NASA Langley Research Center. Proc. Mtgs. Acoust. 12, 040007 (2013)CrossRefGoogle Scholar
  134. 134.
    Rathsam, J., Loubeau, A., Klos, J.: A study in a new test facility on indoor annoyance caused by sonic booms. Technical Report NASA/TM-2012-217332, NASA (2012)Google Scholar
  135. 135.
    Loubeau, A., Rathsam, J., Klos, J.: Laboratory study of outdoor and indoor annoyance caused by sonic booms from sub-scale aircraft. J. Acoust. Soc. Am. 134, 4220 (2013)CrossRefGoogle Scholar
  136. 136.
    Collmar, M., Cook, B.G., Cowart, R., Freund, D., Gavin, J.: Understanding sources of uncertainty and bias error in models of human response to low amplitude sonic booms. In: AIP Conference Proceedings, volume 1685 (2015), 090016Google Scholar
  137. 137.
    Loubeau, A., Sullivan, B.M., Klos, J., Rathsam, J., Gavin, J.R.: Laboratory headphone studies of human response to low-amplitude sonic booms and rattle heard indoors. Technical Report NASA/TM-2013-217975, NASA (2013)Google Scholar
  138. 138.
    Rathsam, J., Loubeau, A., Klos, J.: Simulator study of indoor annoyance caused by shaped sonic boom stimuli with and without rattle augmentation. In: Noise-Con Proc. pp. 307–313 (2013)Google Scholar
  139. 139.
    Rathsam, J., Loubeau, A., Klos, J.: Effects of indoor rattle sounds on annoyance caused by sonic booms. J. Acoust. Soc. Am. 138, EL43–EL48 (2015)CrossRefGoogle Scholar
  140. 140.
    Rathsam, J., Klos, J.: Vibration penalty estimates for indoor annoyance caused by sonic boom. J. Acoust. Soc. Am. 139, 2007 (2016)CrossRefGoogle Scholar
  141. 141.
    Rathsam, J., Klos, J., Loubeau, A.: Influence of chair vibrations on indoor sonic boom annoyance. In: AIP Conference Proceedings, volume 1685, 090014 (2015)Google Scholar
  142. 142.
    Carr, D., Davies, P.: An investigation into the effect of playback environment on perception of sonic booms when heard indoors. In: AIP Conference Proceedings, volume 1685, 090013 (2015)Google Scholar
  143. 143.
    Naka, Y.: Subjective evaluation of loudness of sonic booms indoors and outdoors. Acoust. Sci. Tech. 34, 225–228 (2013)CrossRefGoogle Scholar
  144. 144.
    Loubeau, A., Naka, Y., Cook, B.G., Sparrow, V.W., Morgenstern, J.M.: A new evaluation of noise metrics for sonic booms using existing data. In: AIP Conference Proceedings, volume 1685, 090015-1–090015-4 (2015)Google Scholar
  145. 145.
    DeGolia, J., Loubeau, A.: A multiple-criteria decision analysis to evaluate sonic boom noise metrics. J. Acoust. Soc. Am. 141, 3624 (2017)CrossRefGoogle Scholar
  146. 146.
    Page, J.A., Hodgdon, K., Hobbs, C., Wilmer, C., Krecker, P., Cowart, R., Gaugler, T., Shumway, D., Rosenberger, J., Phillips, D.: Waveforms and Sonic boom Perception and Response (WSPR) program final report, low boom community response program pilot test design, execution and analysis. Technical Report NASA-CR-2014-218180, NASA (2014)Google Scholar
  147. 147.
    Fidell, S., Horonjeff, R.D., Harris, M.: Pilot test of a novel method for assessing community response to low-amplitude sonic booms. Technical Report NASA/CR-2012-217767, NASA (2012)Google Scholar
  148. 148.
    Loubeau, A.: Community response to low-amplitude sonic booms. Proc. Mtgs. Acoust. 19, 040048 (2013)CrossRefGoogle Scholar
  149. 149.
    Page, J.A.: Sonic boom weather analysis of the F-18 low boom dive maneuver. J. Acoust. Soc. Am. 141, 3626 (2017)CrossRefGoogle Scholar
  150. 150.
    Fidell, S., Horonjeff, R., Mestre, V.: Some practical difficulties in assessing community response to low-amplitude sonic booms. J. Acoust. Soc. Am. 141, 3624 (2017)CrossRefGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.Volpe US National Transportation Systems CenterCambridgeUSA
  2. 2.National Aeronautics and Space Administration, Langley Research CenterHamptonUSA

Personalised recommendations