Advertisement

Aircraft noise generation and assessment

Combustion noise: modeling and prediction
  • C. K. W. TamEmail author
  • F. Bake
  • L. S. Hultgren
  • T. Poinsot
Review Paper
  • 11 Downloads

Abstract

This paper reviews both direct and indirect combustion noise. For convenience, they will simply be referred to as combustion noise and entropy noise. Combustion noise has been studied for well over half a century. However, because of the large number of parameters involved and the complexities inherent in the combustion processes, a widely accepted theory has yet to be developed. For this reason, this review focuses primarily for direct combustion noise on experimental measurements, semi-empirical relations and empirical but practical prediction methodologies. Important characteristic features and empirical correlations of combustion noise based on open flames and engine noise data are highlighted. Plausible generation of entropy noise by the passage of entropy waves through a nonuniform mean flow was first predicted theoretically circa 1970s. But it took forty years for its existence to be confirmed experimentally. Since then, there have been numerous publications on this subject. They are the primary materials of this review. The fundamental experiment and noise generation mechanism will be discussed first. Of great practical importance is whether there is significant generation of entropy waves inside an engine. This issue and new methods for modeling and predicting internally generated engine entropy noise are items that are examined at some length. Recent advances in computational methods especially in large eddy simulation lead us to envision an important role to be played by high-fidelity numerical simulation in future combustion and entropy noise research and prediction. A critical evaluation of a strategy for investigating and predicting the generation and propagation of these noise components from the combustor of an engine to its exhaust is included in this review.

Keywords

Aeroacoustics Propulsion noise Combustion noise Modeling Prediction 

Notes

Acknowledgements

L. S. Hultgren was supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject.

References

  1. 1.
    Hultgren, L.S.: A comparison of combustor-noise models. AIAA Paper 2012-2087 (NASA/TM-2012-217671), 18th AIAA/CEAS Aerocoustics Conference, Colorado Springs, Colorado (2012)Google Scholar
  2. 2.
    Candel, S.M.: Analytical studies of some acoustics problems of jet e. PhD thesis, California Institute of Technology (Also DOT-TST-76-104 1976) (1972)Google Scholar
  3. 3.
    Marble, F.E., Candel, S.M.: Acoustic disturbances from gas non-uniformities convected through a nozzle. J. Sound Vib. 55(2), 225–243 (1977)zbMATHGoogle Scholar
  4. 4.
    Bake, F., Kings, N., Fisher, A., Röhle, I.: Experimental investigation of the entropy noise mechanism in aero-engines. Int. J. Aeroacoust. 8(1–2), 125–142 (2009a)Google Scholar
  5. 5.
    Mahan, R.J., Karchmer, A.: Combustion and core noise. In: Hubbard, H.H. (ed) Aeroacoustics of flight vehicles: theory and practice, volume 1, chapter 9, pages 483–517. NASA Reference Publication 1258, WRDC Technical Report 90-3052 (1991)Google Scholar
  6. 6.
    Candel, S., Durox, D., Ducruix, S., Birbaud, A.-L., Noiray, N., Schuller, T.: Flame dynamics and combustion noise: progress and challenges. Int. J. Aeroacoust. 8(1–2), 1–56 (2009)Google Scholar
  7. 7.
    Duran, I., Moreau, S., Nicoud, F., Livebardon, T., Bouty, E., Poinsot, T.: Combustion noise in modern aero-engines. Aerosp. Lab J. 7–05, 1–11 (2014).  https://doi.org/10.12762/2014.AL07-05 Google Scholar
  8. 8.
    Dowling, A.P., Mahmoudi, Y.: Combustion noise. Proc. Combust. Inst. 35, 65–100 (2015)Google Scholar
  9. 9.
    Ihme, M.: Combustion and engine-core noise. Ann. Rev. Fluid Mech. 49, 277–310 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Price, R.B., Hurle, I.R., Sugden, T.M.: Optical studies of the generation of noise in turbulent flames. In: Twelfth Symposium (International) on Combustion: at the University of Poitiers, France, July, 1968, pages 1093–1102. Proceedings of the combustion institute (1969)Google Scholar
  11. 11.
    Hurle, I.R., Price, R.B., Sugden, T.M., Thomas, A.: Sound emission from open turbulent premixed flames. Proc. R. Soc. A 303(1475), 409–427 (1968)Google Scholar
  12. 12.
    Shivashankara, B.N., Strahle, W.C., Handley, J.C.: Evaluation of combustion noise scaling laws by an optical technique. AIAA J. 13(5), 623–627 (1975a)Google Scholar
  13. 13.
    Bragg, S.: Combustion noise. J. Inst. Fuel 36(1), 12–16 (1963)Google Scholar
  14. 14.
    Smith, T.J.B., Kilham, J.K.: Noise generation by open turbulent flames. J. Acoust. Soc. Am. 35(5), 715–724 (1963)Google Scholar
  15. 15.
    Thomas, A., Williams, G.T.: Flame noise: sound emission from spark-ignited bubbles of combustible gas. Proc. R. Soc. A 294(1439), 449–466 (1966)Google Scholar
  16. 16.
    Abugov, D.I., Obrezkov, O.I.: Acoustic noise in turbulent flames. Combust. Expos. Shock Waves 14(5), 606–612 (1978)Google Scholar
  17. 17.
    Clavin, P., Siggia, E.D.: Turbulent premixed flames and sound generation. Combus. Sci. Technol. 78(1–3), 147–155 (1991)Google Scholar
  18. 18.
    Rajaram, R., Lieuwen, T.: Parametric studies of acoustic radiation from premixed flames. Combust. Sci. Technol. 175, 2269–2298 (2003)Google Scholar
  19. 19.
    Hirsh, C., Wäsle, J., Winkler, A., Sattelmayer, T.: A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31(1), 1435–1441 (2007)Google Scholar
  20. 20.
    Strahle, W.C.: On combustion generated noise. J. Fluid Mech. 49, 399–414 (1971)zbMATHGoogle Scholar
  21. 21.
    Strahle, W.C.: Some results in combustion generated noise. J. Sound Vib. 23(1), 113–125 (1972)Google Scholar
  22. 22.
    Lighthill, M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211(1107), 564–587 (1952).  https://doi.org/10.1098/rspa.1952.0060 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lighthill, M.J.: On sound generated aerodynamically. II. Turbulence as a source of sound. Proc. R. Soc. Lond. A 222(1148), 1–32 (1954).  https://doi.org/10.1098/rspa.1954.0049 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Tam, C.K.W., Viswanathan, K., Ahuja, K.K., Panda, J.: The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 235–292 (2008)zbMATHGoogle Scholar
  25. 25.
    Bailly, C., Bogey, C., Candel, S.: Modelling of sound generation by turbulent reacting flows. Int. J. Aeroacoust. 9(4–5), 461–490 (2010)Google Scholar
  26. 26.
    Phillips, O.M.: On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9(1), 1–28 (1960)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Lilley, G.M.: The generation and radiation of supersonic jet noise. Technical Report AFAPL-TR-72-53, Air Force Aero-Propulsion Laboratory, (1972)Google Scholar
  28. 28.
    Lilley, G.M.: The source of aerodynamic noise. Int. J. Aeroacoust. 2(3–4), 241–254 (2003)Google Scholar
  29. 29.
    Kotake, S., Takamoto, K.: Combustion noise: effects of the shape and size of burner nozzle. J. Sound Vib. 112(2), 345–354 (1987)Google Scholar
  30. 30.
    R. Rajaram, Preetham, and T. Lieuwen. Frequency scaling of turbulent premixed flame noise. AIAA Paper 2005-282. In: 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, (2005)Google Scholar
  31. 31.
    Shivashankara, B.N., Strahle, W.C., Handley, J.C.: Combustion noise radiated by open turbulent flames. In Nagamatsu, H.T., O’Keefe, J.V., Schwartz, I.R. (ed). Aeroacoustics: Jet and Combustion Noise; Duct Acoustics, volume 37 of Progress in Astronautics and Aeronautics, pages 277–296. AIAA, (1975)Google Scholar
  32. 32.
    Kumar, R.N.: Further experimental results on the structure and acoustics of turbulent jet flames. In: Schwartz, I.R, Nagamatsu H.T., Strahle W. C. (eds) Aeroacoustics: Jet Noise, Combustion and Core Engine Noise, volume 43 of Progress in Astronautics and Aeronautics, pages 483–507. AIAA, (1976)Google Scholar
  33. 33.
    Kilham, J.K., Kirmani, N.: The effect of turbulence on premixed flame noise. In: Seventeenth Symposium (International) on Combustion, Leeds, England, 1979, pages 327–336. Proceedings of the Combustion Institute, (1979)Google Scholar
  34. 34.
    Kotake, S., Takamoto, K.: Combustion noise: effects of the velocity turbulence of unburned mixture. J. Sound and Vib. 139(1), 9–20 (1990)Google Scholar
  35. 35.
    Ohiwa, N., Tanaka, K., Yamaguchi, S.: Noise characteristics of turbulent diffusion flames with coherent structure. Combust. Sci. Technol. 90(1–4), 61–78 (1993)Google Scholar
  36. 36.
    Knott, P.R.: Noise generated by turbulent non-premixed flames. AIAA Paper 1971-0732. In: AIAA/SAE 7th Propulsion Joint Specialist Conference, Salt Lake City, Utah, (1971)Google Scholar
  37. 37.
    Strahle, W.C.: A review of combustion generated noise. AIAA Paper 1973-1023. In: AIAA Aero-Acoustics Conference, Seattle, Washington, (1973)Google Scholar
  38. 38.
    Hassan, H.A.: Scaling of combustion-generated noise. J. Fluid Mech. 66(3), 445–453 (1974)zbMATHGoogle Scholar
  39. 39.
    Lieuwen, T., Rajaram, R.: Acoustic radiation from premixed flames subjected to convective flow disturbances. AIAA Paper 2002-0480. In: 40th AIAA Areospace Sciences Meeting, Reno, Nevada, (2002)Google Scholar
  40. 40.
    Rajaram, R., Lieuwen, T.: Effect of approach flow turbulence characteristics on sound generation from premixed flames. AIAA Paper 2004-0461. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (2004)Google Scholar
  41. 41.
    Smith, T.J.B.: Combustion Noise. PhD thesis, University of Leeds, (1961)Google Scholar
  42. 42.
    Shivashankara, B.N.: An Experimental Study of Noise Produced by Open Turbulent Flames. PhD thesis, Georgia Institute of Technology, (1973)Google Scholar
  43. 43.
    Lieuwen, T., Mohan, S., Rajaram, R., Preetham. Acoustic radiation from weakly wrinkled premixed flames. Combustion and Flame, 144(1-2):360–369, (2006)Google Scholar
  44. 44.
    Putnam, A.A.: Combustion roar of seven industrial gas burners. J. Inst. Fuel 49(400), 135–138 (1976)Google Scholar
  45. 45.
    Rajaram, R., Lieuwen, T.: Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357–385 (2009)zbMATHGoogle Scholar
  46. 46.
    Tam, C.K.W., Pastouchenko, N.N., Mendoza, J., Brown, D: Combustion noise of auxiliary power units. AIAA Paper 2005–2829. In: 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, (2005)Google Scholar
  47. 47.
    Tam, C.K.W., Golebiowski, M., Seiner, J.M.: On the two components of turbulent mixing noise from supersonic jets. Technical Report AIAA Paper 1996-1716. In: 2nd AIAA Aeroacoustics Conference, State College, Pensylvania, (1996)Google Scholar
  48. 48.
    Tam, C.K.W.: The spectral shape of combustion noise. Int. J. Aeroacoust. 14(3–4), 431–456 (2015).  https://doi.org/10.1016/j.jsv.2015.04.010 Google Scholar
  49. 49.
    Strahle, W.C.: Combustion noise. Prog. Energy Combust. Sci. 4(3), 157–176 (1978)Google Scholar
  50. 50.
    Hultgren, L.S., Miles, J.H., Jorgenson, P.C.E.: Engine system and core noise. In: Dahl, M.D. (ed). Assessment of NASA’s Aircraft Noise Prediction Capability, chapter 3, pages 35–62. NASA/TP-2012-215653, (2012)Google Scholar
  51. 51.
    Karchmer, A.M.: Acoustic modal analysis of a full scale annular combustor. AIAA Paper 1983-0760 (NASA-TM-83334). In: 8th AIAA Aeroacoustics Conference, Atlanta, Georgia, (1983)Google Scholar
  52. 52.
    Royalty, C.M., Schuster, B.: Noise from a turbofan engine without a fan from the engine validation of noise and emission reduction technology (EVNERT) program. AIAA Paper 2008-2810. In: 14th AIAA/CEAS Aeroacoustics conference, Vancouver, British Columbia, (2008)Google Scholar
  53. 53.
    Krejsa, E.A., Karchmer, A.M.: Acoustic modal analysis of the pressure field in the tailpipe of a turbofan engine. Technical Report NASA-TM-83387, NASA, (1983)Google Scholar
  54. 54.
    Schuster, B., Lieber, L.: Narrowband model for gas turbine engine combustion noise prediction. AIAA Paper 2006-2677. In: 12th AIAA/CEAS Aerocoustics conference, Cambridge, Massachusetts, (2006)Google Scholar
  55. 55.
    Motsinger, R.: Prediction of engine combustor noise and correlation with T64 engine low frequency noise. Technical Report R72AEG313, General Electric Co., (1972)Google Scholar
  56. 56.
    Emmerling, J.J., Kazin, S.B., Matta, R.K.: Core engine noise control program, Volume III, Supplement 1—Prediction methods. Technical Report FAA-RD-74-125 III-I (AD A030376), FAA, (1976)Google Scholar
  57. 57.
    Mathews, D.C., Rekos, N.F., Jr, Nagel, R.T.: Combustion noise investigation. Technical Report FAA-RD-77-3, FAA, (1977)Google Scholar
  58. 58.
    Mathews, D.C., Rekos Jr., N.F.: Prediction and measurement of direct combustion noise in turbopropulsion systems. J. Aircraft 14(9), 850–859 (1977)Google Scholar
  59. 59.
    Ho, P.Y., Doyle, V.L.: Combustion noise prediction update. AIAA Paper 1979-0588. In: 5th AIAA Aerocoustics Conference, Seattle, Washington, (1979)Google Scholar
  60. 60.
    Zuckerman, R.S.: Core engine noise reduction: Definition and trends. AIAA Paper 1977-1273. In: 4th AIAA Aeroacoustics Conference, Atlanta, Georgia, (1977)Google Scholar
  61. 61.
    Society of Automotive Engineers International. Gas turbine jet exhaust prediction. Technical Standard SAE ARP876 Rev. E, (2006)Google Scholar
  62. 62.
    Zorumski, W.E.: Aircraft noise prediction program theoretical manual, part 1. Technical Report NASA-TM-83199-PT-1, NASA, (1982)Google Scholar
  63. 63.
    Zorumski, W.E.: Aircraft noise prediction program theoretical manual, part 2. Technical Report NASA-TM-83199-PT-2, NASA, (1982)Google Scholar
  64. 64.
    Gillian, R.E.: Aircraft noise prediction program user’s manual. Technical Report NASA-TM-84486, NASA, (1982)Google Scholar
  65. 65.
    Hultgren, L.S.: Full-scale turbofan-engine turbine-transfer function determination using three internal sensors. AIAA Paper 2011-2912 (NASA/TM-2012-217252). In: 17th AIAA/CEAS Aeroacoustic Conference, Portland, Oregon, (2011)Google Scholar
  66. 66.
    Weir, D.S.: Engine validation of noise and emission reduction technology phase I. Technical Report NASA/CR-2008-215225, NASA. Honeywell Report No. 21-13843, Honeywell Aerospace, Phoenix, Arizona (2008)Google Scholar
  67. 67.
    Hultgren, L.S., Miles, J.H.: Noise-source separation using internal and far-field sensors for a full-scale turbofan engine. AIAA Paper 2009-3220 (NASA/TM–2009-215834). In: 15th AIAA/CEAS Aeroacoustic conference, Miami, Florida, (2009)Google Scholar
  68. 68.
    Bertsch, L., Guérin, S., Looye, G., Pott-Pollenske, M.: The parametric aircraft noise analysis module - status overview and recent applications. AIAA Paper 2011-2855. In: 17th AIAA/CEAS Aeroacoustic conference, Portland, Oregon, (2011)Google Scholar
  69. 69.
    Bertsch, L., Dobrzynski, W., Guérin, S.: Tool development for low-noise aircraft design. J. Aircraft 47(2), 694–699 (2010)Google Scholar
  70. 70.
    Bertsch, L., Isermann, U.: Noise prediction toolbox used by the DLR aircraft noise working group. Paper, 42nd International Congress and Exposition on Noise Control Engineering (Inter-Noise 2013), Innsbruck, Austria, (2013)Google Scholar
  71. 71.
    Brunet, M., Malbéqui, P., Ghedhaifi, W.: A novel approach to air transport system environmental impact evaluation through physical modelling and simulation. Paper, 26th International Congress of the Aeronautical Sciences (ICAS’08), (2008)Google Scholar
  72. 72.
    Sanders, L., Malbéqui, P., LeGriffon, I.: Capabilities of IESTA-CARMEN to predict aircraft noise. ICSV23 Paper 255. In: 23rd International Congress on Sound and Vibration (ICSV23), Athens, Greece, (2016)Google Scholar
  73. 73.
    Brunet, M., Chaboud, T., Huynh, N., Malbéqui, P., Ghedhaifi, W.: Environmental impact evaluation of air transport systems through physical modelling and simulation. AIAA Paper 2009-6936. In: 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), Hilton Head, South Carolina, (2009)Google Scholar
  74. 74.
    Gliebe, P., Mani, R., Shin, H., Mitchel, B., Ashford, G., Salamah, S., Connell, S.: Aeroacoustic prediction codes. Technical Report NASA/CR-2000-210244, NASA, (2000)Google Scholar
  75. 75.
    Pickett, G.F.: Core engine noise due to temperature fluctuations convecting through turbine blade rows. AIAA Paper 1975-0528. In: 2nd AIAA Aero-Acoustics Conference, Hampton, Virginia, (1975)Google Scholar
  76. 76.
    Bake, F., Michel, U., Röhle, I., Richter, C., Thiele, F., Liu, M., Noll, B.: Indirect combustion noise generation in gas turbines. AIAA Paper 2005-2830. In: 11th AIAA/CEAS Aeroacoustics Conference, Monterey, California, (2005)Google Scholar
  77. 77.
    Bake, F., Michel, U., Röhle, I.: Investigation of entropy noise in aero-engine combustors. Paper GT2006-90093, ASME Turbo Expo 2006, Barcelona, Spain, (2006)Google Scholar
  78. 78.
    Bake, F., Michel, U., Röhle, I.: Experimental investigation of the fundamental entropy noise mechanism in aero-engines. AIAA Paper 2007-3694. In: 13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy, (2007)Google Scholar
  79. 79.
    Bake, F., Michel, U., Röhle, I.: Fundamental mechanisms of entropy noise in aero-engines: experimental investigation. Paper GT2007-27300, ASME Turbo Expo 2007, Montreal, Canada, (2007)Google Scholar
  80. 80.
    Bake, F., Michel, U., Röhle, I.: Investigation of entropy noise in aero-engine combustors. J. Eng. Gas Turbines Power 129(2), 370–376 (2007c)Google Scholar
  81. 81.
    Kings, N., Bake, F.: Indirect combustion noise: noise generation by accelerated vorticity in a nozzle flow. Int. J. Spray Combust. Dyn. 2(3), 253–266 (2010)Google Scholar
  82. 82.
    Kings, N., Enghardt, L., Bake, F.: Indirect combustion noise: Experimental investigation of the vortex sound generation in accelerated swirling flows. AIAA Paper 2013-2100. In: 19th AIAA/CEAS Aeroacoustic Conference, Berlin, Germany, (2013)Google Scholar
  83. 83.
    Kings, N., Enghardt, L., Bake, F.: Broadband indirect noise generation by accelerated vorticity. AIAA Paper 2015-2820. In: 21st AIAA/CEAS Aeroacoustic Conference, Dallas, Texas, (2015)Google Scholar
  84. 84.
    Fischer, A., Bake, F., Röhle, I.: Broadband entropy noise phenomena in a gas turbine combustor. Paper GT2008-50263, ASME Turbo Expo 2008, Berlin, Germany, (2008)Google Scholar
  85. 85.
    Chu, B.-T., Kovasznay, L.S.G.: Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1958)MathSciNetGoogle Scholar
  86. 86.
    Tam, C.K.W., Parrish, S.A.: On the generation of indirect combustion noise. AIAA Paper 2014-3315. In: 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, (2014)Google Scholar
  87. 87.
    Zukoski, E.E., Auerbach, J.M.: Experiments concerning the response of supersonic nozzles to fluctuating inlet conditions. J. Eng. Power 98(1), 60–64 (1976)Google Scholar
  88. 88.
    Bohn, M.S.: Responce of a subsonic nozzle to acoustic and entropy disturbances. J. Sound Vib. 52(2), 283–297 (1977)Google Scholar
  89. 89.
    Strahle, W.C., Muthukrishnan, M.: Correlation of combustor rig sound power data and theoretical basis of results. AIAA J. 18(3), 269–274 (1980)Google Scholar
  90. 90.
    Muthukrishnan, M., Strahle, W.C., Neale, D.H.: Separation of hydrodynamic, entropy, and combustion noise in a gas turbine combustor. AIAA J. 16(4), 320–327 (1978)Google Scholar
  91. 91.
    Guédel, A., Farrando, A.: Experimental study of turboshaft engine core noise. J. Aircraft 23(10), 763–767 (1986)Google Scholar
  92. 92.
    Bake, F., Kings, N., Fischer, A., Röhle, I.: Indirect combustion noise: investigations of noise generated by the acceleration of flow inhomogeneities. Acta Acus. United Acust. 95, 461–469 (2009b)Google Scholar
  93. 93.
    Bake, F., Richter, C., Mühlbauer, B., Kings, N., Röhle, I., Thiele, F., Noll, B.: The entropy wave generator (EWG): a reference case on entropy noise. J. Sound Vib. 326(3–5), 574–598 (2009)Google Scholar
  94. 94.
    Leyko, M., Nicoud, F., Poinsot, T.: Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA J. 47(11), 2709–2716 (2009)Google Scholar
  95. 95.
    Leyko, M., Moreau, S., Nicoud, F., Poinsot, T.: Wave transmission and generation in turbine stages in a combustion-noise framework. AIAA Paper 2010-4032. In: 16th AIAA/CEAS Aerocoustics Conference, Stockholm, Sweden, (2010)Google Scholar
  96. 96.
    Durán, I., Moreau, S.: Analytical and numerical study of the entropy wave generator experiment on indirect combustion noise. AIAA Paper 2011-2829. In: 17th AIAA/CEAS Aeroacoustic Conference, Portland, Oregon, (2011)Google Scholar
  97. 97.
    Goh, C.S., Morgans, A.S.: Phase prediction of the responce of choked nozzles to entropy and acoustic disturbances. J. Sound Vib. 330(21), 5184–5198 (2011)Google Scholar
  98. 98.
    Giauque, A., Huet, M., Clero, F.: Analytical analysis of indirect combustion noise in subcritical nozzles. J. Eng. Gas Turbines Power, 134(11):111202–1–8, (2012)Google Scholar
  99. 99.
    Morgans, A.S., Goh, C.S., Dahan, J.A.: The dissipation and shear dispersion of entropy waves in combustor thermoacoustics. J. Fluid Mech. (JFM Rapids), 733:R2–1–11, (2013)Google Scholar
  100. 100.
    Leyko, M., Moreau, S., Nicoud, F., Poinsot, T.: Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock. J. Sound Vib. 330(16), 3944–3958 (2011)Google Scholar
  101. 101.
    Durán, I., Moreau, S.: Study of the attenuation of waves propagating through fixed and rotating turbine blades. AIAA Paper 2012-2133. In: 18th AIAA/CEAS Aerocoustics Conference, Colorado Springs, Colorado, (2012)Google Scholar
  102. 102.
    Durán, I., Moreau, S.: Numerical simulation of acoustic and entropy waves propagating through turbine blades. AIAA Paper 2013-2102. In: 19th AIAA/CEAS Aeroacoustic Conference, Berlin, Germany, (2013)Google Scholar
  103. 103.
    Mishra, A., Bodony, D.J.: Evaluation of actuator disk theory for predicting indirect combustion noise. J. Sound Vib. 332(4), 821–838 (2013)Google Scholar
  104. 104.
    Cumpsty, N.A., Marble, F.E.: The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise. Proc. R. Soc. Lond. A 357, 323–344 (1977a)Google Scholar
  105. 105.
    Goh, C.S., Morgans, A.S.: The infuence of entropy waves on the thermoacoustic stability of a model combustor. Combust. Sci. Technol. 185(2), 249–268 (2013)Google Scholar
  106. 106.
    Tam, C.K.W., Parrish, S.A., Xu, J., Schuster, B.: Indirect combustion noise of auxiliary power units. J. Sound Vib. 332, 4004–4020 (2013)Google Scholar
  107. 107.
    Knobloch, K., Werner, T., Bake, F.: Entropy noise generation and reduction in a heated nozzle flow. AIAA Paper 2015-2818. In: 21st AIAA/CEAS Aeroacoustic Conference, Dallas, Texas, (2015)Google Scholar
  108. 108.
    Miles, J.H.: Time delay analysis of turbofan engine direct and indirect combustion noise sources. J. Propuls. Power 25(1), 218–227 (2009)MathSciNetGoogle Scholar
  109. 109.
    Miles, J.H.: Separating direct and indirect engine combustion noise using the correlation function. J. Propuls. Power 26(5), 1144–1152 (2010)Google Scholar
  110. 110.
    Bake, F., Gaetani, P., Persico, G., Neuhaus, L., Knobloch, K.: Indirect noise generation in a high pressure turbine stage. AIAA Paper 2016-3004. In: 22nd AIAA/CEAS Aeroacoustic Conference, Lyon, France, (2016)Google Scholar
  111. 111.
    Pardowitz, B., Tapken, U., Knobloch, K., Bake, F., Bouty, E., Davis, I., Bennett, G.: Core noise—identification of broadband noise sources of a turbo-shaft engine. AIAA Paper 2014-3321. In: 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, (2014)Google Scholar
  112. 112.
    Chung, J.Y.: Rejection of flow noise using a coherence function method. J. Acoust. Soc. Am. 62(2), 388–395 (1977)Google Scholar
  113. 113.
    Hsu, J.S., Ahuja, K.K.: A coherence-based technique to separate internal mixing noise from farfield measurements. AIAA Paper 1998-2296. In: 4th AIAA/CEAS Aeroacoustic Conference, Toulouse, France, (1998)Google Scholar
  114. 114.
    Minami, T., Ahuja, K.K.: Five microphone method for separating two different noise sources from farfield measurements contaminated by extraneous noise. AIAA Paper 2003-3261. In: 9th AIAA/CEAS Aeroacoustic Conference, Hilton Head, South Carolina, (2003)Google Scholar
  115. 115.
    Davis, I., Bennett, G.J.: Experimental investigations of coherence based noise source identification techniques for turbomachinery applications - classic and novel techniques. AIAA Paper 2011-2830. In: 17th AIAA/CEAS Aeroacoustic Conference, Portland, Oregon, (2011)Google Scholar
  116. 116.
    Davis, I., Bennett, G.J.: Spatial noise source identification of tonal noise in turbomachinery using the coherence function on a modal basis. AI 2011-2825. In: 17th AIAA/CEAS Aeroacoustic Conference, Portland, Oregon, (2011)Google Scholar
  117. 117.
    Enghardt, L., Holewa, A., Tapken, U.: Comparison of different analysis techniques to decompose a broad-band ducted sound field in its mode constituents. AIAA Paper 2007-3520. In: 13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy, (2007)Google Scholar
  118. 118.
    Jürgens, W., Tapken, U., Pardowitz, B., Kausche, P., Bennett, G.J., Enghardt, L.: Technique to analyze characteristics of turbomachinery broadband noise sources. AIAA Paper 2010-3979. In: 16th AIAA/CEAS Aerocoustics Conference, Stockholm, Sweden, (2010)Google Scholar
  119. 119.
    Schuster, B., Gordon, G., Hultgren, L.S.: Dynamic temperature and pressure measurements in the core of a propulsion engine. AIAA Paper 2015-2819. In: 21st AIAA/CEAS Aeroacoustic Conference, Dallas, Texas, (2015)Google Scholar
  120. 120.
    Cumpsty, N.A., Marble, F.E.: Core noise from gas turbine exhausts. J. Sound Vib. 54(2), 297–309 (1977b)Google Scholar
  121. 121.
    Tam, C.K.W., Parrish, S.A.: Noise of high-performance aircraft at afterburner. J. Sound Vib. 352, 103–128 (2015)Google Scholar
  122. 122.
    Papadogiannis, D., Wang, G., Moreau, S., Duchaine, F., Gicquel, L., Nicoud, F.: Assessment of the indirect combustion noise generated in a transonic high-pressure turbine stage. J. Eng. Gas Turbines Power, 138(4):041503–1–8, (2016)Google Scholar
  123. 123.
    Tam, C.K.W.: Computational aeroacoustics: a wavenumber approach. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  124. 124.
    Tam, C.K.W., Li, Z., Schuster, B.: An investigation on indirect combustion noise generation in a turbofan engine. AIAA Paper 2016-2746. In: 22nd AIAA/CEAS Aeroacoustic Conference, (2016)Google Scholar
  125. 125.
    Leyko, M., Durán, I., Moreau, S., Nicoud, F., Poinsot, T.: Simulation and modelling of the waves transmission and generation in a stator blade row in a combustion-noise framework. J. Sound Vib. 333(23), 6090–6106 (2014)Google Scholar
  126. 126.
    Durán, I., Moreau, S., Poinsot, T.: Analytical and numerical study of combustion noise through a subsonic nozzle. AIAA J. 51(1), 42–52 (2013)Google Scholar
  127. 127.
    Schlimpert, S., Koh, S.R., Pausch, K., Meinke, M., Schröder, W.: Analysis of combustion noise of a turbulent premixed slot jet flame. Combust. Flame 175, 292–306 (2017)Google Scholar
  128. 128.
    Ihme, M., Pitsch, H., Bodony, D.J.: Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32, 1545–1554 (2009)Google Scholar
  129. 129.
    Livebardon, T., Moreau, S., Gicquel, L., Poinsot, T., Bouty, E.: Combining les of combustion chamber and an actuator disk theory to predict combustion noise in a helicopter engine. Combust. Flame 165, 272–287 (2016)Google Scholar
  130. 130.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. elearning.cerfacs.fr/combustion, third edition, (2012)Google Scholar
  131. 131.
    Pitsch, H.: Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)MathSciNetzbMATHGoogle Scholar
  132. 132.
    Poinsot, T.: Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)MathSciNetGoogle Scholar
  133. 133.
    Jaravel, T., Ribner, E., Cuenot, B., Bulat, G.: Large eddy simulation of a model gas turbine burner using reduced chemistry with accurate pollutant prediction. Proc. Combust. Inst. 36(3), 3817–3825 (2017)Google Scholar
  134. 134.
    Durán, I., Moreau, S.: Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. J. Fluid Mech. 723, 190–231 (2013b)MathSciNetzbMATHGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Florida State UniversityTallahasseeUSA
  2. 2.German Aerospace Center (DLR)BerlinGermany
  3. 3.National Aeronautics and Space Administration (NASA)ClevelandUSA
  4. 4.Institute de Mecanique des Fluides de ToulouseToulouseFrance

Personalised recommendations