Aircraft noise immission modeling

  • Ullrich Isermann
  • Lothar BertschEmail author
Review Paper


This contribution to the CEAS special edition Aircraft Noise Generation and Assessment focuses on the simulation of the aircraft noise immission, i.e., the aircraft noise received on the ground. This process includes two steps, the description of the sound emission by the aircraft and the modeling of the sound propagation through the atmosphere. An overview is provided on how aircraft noise immission can be described and assessed by noise descriptors. These quantities can be derived from measurable and computable quantities like maximum sound levels, time-integrated sound levels and the number of aircraft movements. Moreover, a generation of novel noise indices which relate human reactions to noise is presented. Fundamentals of aircraft noise modeling are explained. First, this includes a classification of aircraft noise models into best practice and scientific models and their applicability to the noise mitigation measures described by ICAO’s Balanced Approach to Aircraft Noise Management. Furthermore, the overall workflow of a noise modeling task is explained as well the special role of noise model databases and the simulation of aircraft flight paths. The most common methods used to describe the sound propagation process through the atmosphere are introduced. This covers the modeling of the fundamental propagation effects which are used by all noise model types as well as a description of propagation effects which are of importance only for special modeling tasks and which normally require sophisticated physical approaches. The fundamental difference between best practice and scientific aircraft noise models—i.e., the source modeling—is described in detail thereafter. Best practice models are based on a simple source description. Moreover, a common approach is to combine emission and propagation using pre-calculated noise–power–distance tables. In contrast, scientific models are of multi-source type, i.e., they differentiate between particular noise-generating mechanisms—at least between engine noise and aerodynamic noise. This model type always requires a time step-based flightpath description, whereas the best practice models usually are based on a flightpath description by longer segments. Finally, the selected application examples are presented for both model categories. This covers the range from noise zoning over what-if studies for noise mitigation measures or definition of noise abatement flight procedures up to the modeling of noise reduction measures at the source. Finally, the application of scientific models in the aircraft design phase is explained.


Aircraft noise Aircraft noise modeling 

List of symbols



Bypass ratio


Speed of sound (m/s)


Atmospheric absorption coefficient for frequency band n (dB/m)


Normalized noise exposure


Effective perceived noise level (dB)


Frequency (Hz)

\(f_{\text {AWR}}\)

Exposure–response relationship for aircraft noise-induced awakenings


Energy fraction


Frankfurter Nacht index


Frankfurter Tages index

\(H_{\text {rel}}\)

Relative humidity (%)


Length of flightpath segment (m)


Sound level (dB)

\(L_{\text {AX}}\)

Sound exposure level (synonym for \(L_{p{\text {,AE}}}\)) (dB)

\(L_{\text {max}}\)

Maximum sound level (dB)

\(\overline{L_{\text {max}}}\)

Average maximum sound level


N% percentile level

\(L_{\text {den}}\)

Day–evening–night sound level (dB

\(L_{\text {E}}\)

Single event sound level (dB)

\(L_{\text {eq}}\)

Equivalent continuous sound level (dB)

\(L_{p{\text {,AE}}}\)

A-weighted single event sound pressure level (dB)

\(L_{p,{\text {A,eq}}}\)

A-weighted equivalent continuous sound pressure level (dB)

\(L_{\text {r}}\)

Rating level (dB)

\(L_{\text {thr}}\)

Threshold level (dB)


Sound power level of frequency band n (dB)


Number of noise events

\(N_{\text {thr}}\)

Number of noise events above a threshold level

\(N_{\text {AWR}}\)

Number of aircraft noise-induced awakenings


Number above threshold


Engine power parameter


Perceived noise level (dB)


Tone-corrected perceived noise level (dB)


Distance between source and observer (m)


Sound exposure level (synonym for \(L_{p{\text {,AE}}}\)) (dB)


Time (s)


Normalizing time (s)


10 dB down time (s)

\(t_{\text {e}}\)

Effective duration (s)

\(t_{\text {ret}}\)

Retarded time (s)


Temperature (\(^\circ\)C)

\(T_{\text {c}}\)

Characterization time (s)


Partial time (of rating time) (s)

\(T_{\text {r}}\)

Rating time (s)


Aircraft speed (m/s)


Level correction accounting for engine power changes (dB)


Zürcher Fluglärm index

\(\alpha , \beta\)

Elevation angles

\(\Delta _{\text {atm}}\)

Level correction for atmospheric attenuation (dB)

\(\Delta _{\text {div}}\)

Level correction for geometrical spreading (dB)

\(\Delta _{\text {grnd}}\)

Level correction for overground attenuation (dB)


Longitudinal emission angle


Lateral emission angle


\({\text {A}}\)

Frequency weighting A

\({\text {PN}}\)

Perceived noise



\({\text {eff}}\)


\({\text {eq}}\)



Flightpath segment number


Frequency band number



\({\text {r}}\)

Rating (level or time)

\({\text {S}}\)

Time weighting SLOW

\({\text {thr}}\)



Sound power


\(\text {in}\)

Indoor value

\(\text {obs}\)

Value at observer position

\(\text {src}\)

Related to the sound source



Aircraft Noise and Performance Database


Aircraft Noise Prediction Program


German aircraft noise calculation procedure


ECAC Standard method for aircraft noise calculation


Swiss aircraft noise calculation procedure


International Civil Aviation Organization


Integrated Noise Model


Noise–power–distance data


Parametric Aircraft Noise Analysis Module


Society of Automotive Engineers


Swiss aircraft noise calculation procedure



  1. 1.
    Antoine, N.E., Kroo, I.M.: Framework for aircraft conceptual design and environmental performance studies. AIAA J. 43(10), 2100–2109 (2005)CrossRefGoogle Scholar
  2. 2.
    Arntzen, M., Bertsch, L., Simons, D.G.: Auralization of novel aircraft configurations. In: Proceedings of the 5th CEAS Air & Space Conference, Delft (2015)Google Scholar
  3. 3.
    Attenborough, K., Crocker, M.J.: Sound Propagation in the Atmosphere, Chapter 5. Department of Mechanical Engineering, Auburn University, Auburn (2007)Google Scholar
  4. 4.
    Basner, M., Buess, H., Elmenhorst, D., Gerlich, A., Luks, N., Maa, H., Mawet, L., Müller, E.-W., Müller, U., Plath, G., Quehl, J., Samel, A., Schulze, M., Vejvoda, M., Wenzel, J.: Nachtfluglärmwirkungen (Band 1): Zusammenfassung. Technical Report FB2004-07/D, DLR, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln, July 2004Google Scholar
  5. 5.
    Basner, M., Isermann, U., Samel, A., Schmid, R.: Integration neuerer Erkenntnisse in einen Novellierungsansatz für eine Fluglärmschutzverordnung. FE-Bericht Nr. L-3/2003-50.0301/2003, DLR, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Göttingen / Köln-Porz, January 2006. Im Auftrag des Bundesministeriums für Verkehr, Bau und Stadtentwicklung (BMVBS)Google Scholar
  6. 6.
    Basner, M., Samel, A., Isermann, U.: Aircraft noise effects on sleep: application of the results of a large polysomnographic field study. J. Acoust. Soc. Am. 119(5), 2772–2784 (2006)CrossRefGoogle Scholar
  7. 7.
    Bertsch, L.: Noise prediction within conceptual aircraft design. Technical Report DLR-FB-2013-20, DLR, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Göttingen (2013)Google Scholar
  8. 8.
    Bertsch, L., Isermann, U.: Noise prediction toolbox used by the DLR aircraft noise working group. In: Proceedings of the InterNoise 2013, Innsbruck (2013)Google Scholar
  9. 9.
    Bertsch, L., Schaeffer, B., Guerin, S.: Towards an uncertainty analysis for parametric aircraft system noise prediction. In: Proceedings of the 12th ICBEN Congress on Noise as a Public Health Problem, Zuerich (2017)Google Scholar
  10. 10.
    Binder, U.: Untersuchung des Einflusses realer atmosphrischer Bedingungen auf die Ausbreitung von Fluglrm. DLR-FB-2008-18, DLR, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Göttingen (2008)Google Scholar
  11. 11.
    Binder, U., Isermann, U., Schmid, R.: Influence of real atmospheric conditions on free propagation of aircraft noise. Acta Acust. United Acust. 99(2), 192–200 (2010)CrossRefGoogle Scholar
  12. 12.
    Blumrich, R., Heimann, D.: A linearized Eulerian sound propagation model for studies of complex meteorological effects. J. Acoust. Soc. Am. 112, 446–455 (2002)CrossRefGoogle Scholar
  13. 13.
    Boeker, E.R., Dinges, E., He, B., Fleming, G., Roof, C.J., Gerbi, P.J., Rapoza, A.S., Hemann, J.: Integrated noise model (INM) version 7.0 technical manual. Report FAA-AEE-08-01, Federal Aviation Administration (FAA), January 2008Google Scholar
  14. 14.
    Burley, C., Rawls, J.W., Berton, J.J., Marcolini, M.A.: Assessment of NASA’s aircraft noise prediction capabilities—chapter 2: aircraft system noise prediction. NASA Technical Report, NASA/TP-2012-215653 (2012)Google Scholar
  15. 15.
    Commission of the European Communities: Directive 2002/49/EG of the European Parliament and of the Council of 25. June 2002 relating to the assessment and management of environmental noise. Official Journal of the European Communities, L189/12 vom 18.7.2002, June 2002Google Scholar
  16. 16.
    Dobrzynski, W.: Almost 40 years of airframe noise research: what did we achieve? J. Aircr. 47(2), 353–367 (2010)CrossRefGoogle Scholar
  17. 17.
    Dowling, A., Greitzer, E.: The silent aircraft—overview. In: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Rheno (2007)Google Scholar
  18. 18.
    Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR): Leiser Flugverkehr—zusammenfassender Projekt-Abschlussbericht. Technical Report, Deutsches Zentrum für Luft- und Raumfahrt e.V., Göttingen, June 2004Google Scholar
  19. 19.
    Deutsches Institut für Normung (DIN): Measurement and assessment of aircraft sound. Standard DIN 45643, February 2011Google Scholar
  20. 20.
    Der Bundesminister für Umwelt Naturschutz und Reaktorsicherheit: Bekanntmachung der Neufassung des Gesetzes zum Schutz gegen Fluglärm vom 31. Oktober 2007. BGBl Teil I, Nr.56, S.2550-2556, Bonn, 9. November 2007Google Scholar
  21. 21.
    Der Bundesminister für Umwelt Naturschutz und Reaktorsicherheit: Bekanntmachung der Anleitung zur Datenerfassung über den Flugbetrieb (AzD) und der Anleitung zur Berechnung von Lärmschutzbereichen (AzB) vom 19. November 2008. BAnz. Nr. 195a vom 23. Dezember 2008, S. 1-232, December 2008Google Scholar
  22. 22.
    Eurocontrol Experimental Centre: The aircraft noise and performance (ANP) database: an international data resource for aircraft noise modelers. Accessed Oct 2017
  23. 23.
    European Civil Aviation Conference (ECAC): Methodology for Computing Noise Contours Around Civil Airports, vol. 1. Applications Guide, vol. 2: Technical Guide, vol. 3: Part 1—Reference Cases and Verification Framework. ECAC.CEAC Doc.29, 4th edn., December 2016. Accessed Oct 2017
  24. 24.
    Fink, M.R.: Airframe noise prediction method. Report FAA-RD-77-29 (1977)Google Scholar
  25. 25.
    Forum Flughafen und Region (FFR): Expertengremium Aktiver Schallschutz: Bericht der Kleingruppe Fluglärmindex, endgültige Version. FFR, Frankfurt, 28.10.2009Google Scholar
  26. 26.
    He, H., Dinges, E., Hemann, J., Rickel, D., Mirsky, L., Roof, C.J., Boeker, E., Gerbi, P.J., Senzig, D.A.: Integrated noise model (INM) version 7.0 users guide. Report FAA-AEE-07-04, Federal Aviation Administration (FAA), April 2007Google Scholar
  27. 27.
    Heidmann, M.F.: Interim prediction method for fan and compressor source noise. NASA TMX-71763, NASA (1979)Google Scholar
  28. 28.
    Hofmann, J., Heutschi, K.: An engineering model for sound pressure in shadow zones based on numerical simulations. Acta Acust. United Acust. 91(4), 661–670 (2005)Google Scholar
  29. 29.
    International Civil Aviation Organization (ICAO): Environmental protection. Annex 16 to the Convention on International Civil Aviation, vol. I. Aircraft noise. ICAO Annex 16, vol. I, 5th edn (2008)Google Scholar
  30. 30.
    International Civil Aviation Organization (ICAO): Guidance on the balanced approach to aircraft noise management. ICAO Doc.9829, 2nd edn (2008)Google Scholar
  31. 31.
    Iemma, U., Leotardi, C., Centracchio, F., Diez, M.: Decision making based on community noise annoyance in the multi-objective optimization of a commercial aircraft. In: Proceedings of the International Congress on Sound & Vibration, Bangkok, Thailand (2013)Google Scholar
  32. 32.
    Isermann, U., Schmid, R.: Bewertung und Berechnung von Fluglärm. FE-Bericht Nr. L-2/96-50144/96, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Strömungsmechanik, Göttingen, July 1999Google Scholar
  33. 33.
    Isermann, U., Vogelsang, B.M.: AzB and ECAC Doc.29—two best-practice European aircraft noise prediction models. Noise Control Eng. J. 58(4), 455–461 (2010)CrossRefGoogle Scholar
  34. 34.
    International Organization for Standardization (ISO): Standard atmosphere. Standard ISO 2533 (1975)Google Scholar
  35. 35.
    International Organization for Standardization (ISO): Acoustics—attenuation of sound during propagation outdoors. Part 1: calculation of the absorption of sound by the atmosphere. Standard ISO 9613-1, June 1993Google Scholar
  36. 36.
    Kontos, K.B., Janardan, B.A., Gliebe, P.R.: Improved NASA-ANOPP noise prediction computer code for advanced subsonic propulsion systems. NASA-CR-195480 (1996)Google Scholar
  37. 37.
    Krebs, W., Bütikofer, R., Plüss, S., Thomann, G.: Sound source data for aircraft noise simulation. Acta Acust. United Acust. 90(1), 91–100 (2004)Google Scholar
  38. 38.
    Lummer, M.: Maggi-Rubinowicz diffraction correction for ray-tracing calculations of engine noise shielding. In: Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference, Vancouver (2008)Google Scholar
  39. 39.
    Maekawa, Z.: Noise reduction by screens. Appl. Acoust. 1(3), 157–173 (1986)CrossRefGoogle Scholar
  40. 40.
    Malbéqui, P., Rozenberg, Y., Bulté, J.: Aircraft noise modeling and assessment in the IESTA program. In: Proceedings of the InterNoise 2011, Osaka (2010)Google Scholar
  41. 41.
    Moreau, A.: A unified analytical approach for the acoustic conceptual design of fans or modern aero-engines. DLR-FB-2017-10, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin (2017)Google Scholar
  42. 42.
    Moreau, A., Guerin, S., Busse, S.: A method based on the ray structure of acoustic modes for predicting the liner performance in annular ducts with flow. In: Proceedings of the NAG/DAGA International Conference on Acoustics, Rotterdam (2009)Google Scholar
  43. 43.
    Olsen, H., Liasjo, K.H., Granoien, I.L.N: NORTIM version 3.3. User interface documentation. Report STF40 95038, SINTEF, May 1995Google Scholar
  44. 44.
    M. Pott-Pollenske et al.: Airframe noise characteristics from flyover measurements and prediction. In: Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference 2006, Cambridge, Massachusetts, USA (2006)Google Scholar
  45. 45.
    Rizzi, S.A., Aumann, A.R., Lopes, L.V., Burley, C.L.: Auralization of hybrid wing–body aircraft flyover noise from system noise predictions. AIAA J. 51, 1914–1926 (2014)Google Scholar
  46. 46.
    K.-S. Rossignol: empirical prediction of airfoil tip noise. In: Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference 2011, Portland, Oregon, USA (2011)Google Scholar
  47. 47.
    Sahai, A., Anton, E., Stumpf, E., Wefers, F., Vorlaender, M.: Interdisciplinary auralization of take-off and landing procedures for subjective assessment in virtual reality environments. In: Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (2012)Google Scholar
  48. 48.
    Schäffer, B., Thomann, G., Huber, P., Brink, M., Plüss, S., Hofmann, R.: Zurich aircraft noise index: an index for the assessment and analysis of the effects of aircraft noise on the population. Acta Acust. United Acust. 98(3), 505–519 (2012)CrossRefGoogle Scholar
  49. 49.
    Society of Automotive Engineers (SAE): Standard values of atmospheric absorption as a function of temperature and humidity. Aerospace Recommended Practice, SAE ARP 866A, March 1975Google Scholar
  50. 50.
    Society of Automotive Engineers (SAE): Application of pure-tone atmospheric absorption losses to one-third octave-band data. Aerospace Recommended Practice, SAE ARP 5535, August 2013Google Scholar
  51. 51.
    Society of Automotive Engineers (SAE): Method for predicting lateral attenuation of aircraft noise. Aerospace Information Report SAE AIR 5662, April 2006Google Scholar
  52. 52.
    Stone, J.R., Groesbeck, D.E., Zola, C.L.: Conventional profile coaxial jet noise prediction. AIAA J. 21(1), 336–342 (1983)CrossRefGoogle Scholar
  53. 53.
    Stone, J.R., Krejsa, E.A., Clark, B.J., Berton, J.J.: Jet noise modeling for suppressed and unsuppressed aircraft in simulated flight. NASA/TM2009-215524, NASA, Glenn Research Center, 2009Google Scholar
  54. 54.
    Thomas, R.H., Burley, C.L., Guo, Y: Progress of aircraft system noise assessment with uncertainty quantification for the environmentally responsible aviation project. In: Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon (2016)Google Scholar
  55. 55.
    Thomas, R.H., Guo, Y.: Ground noise contour prediction for a nasa hybrid wing body subsonic transport aircraft. In: Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver (2017)Google Scholar
  56. 56.
    Wunderli, J.M., Zellmann, C., Köpfli, M., Habermacher, M., Schwab, O., Schlatter, F., et al.: sonAIR—a GIS-integrated spectral aircraft noise simulation tool for single flight prediction and noise mapping. Acta Acust. United Acust. 104, 440–451 (2018)CrossRefGoogle Scholar
  57. 57.
    Zellmann, C., Schaeffer, B., Wunderli, J.M., Isermann, U., Paschereit, C.O.: Aircraft noise emission model accounting for aircraft flight parameters. J. Aircr. 55, 682–695 (2018). CrossRefGoogle Scholar
  58. 58.
    Zubrow, A., Hwang, S., Ahearn, M., Hansen, A., Koopmann, J., Solman, G.: Aviation environmental design tool (AEDT) 2D user guide. Report DOT-VNTSC-FAA-17-15, U.S. Department of Transportation, Federal Aviation Administration (FAA), September 2017Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center (DLR)GöttingenGermany

Personalised recommendations