Advertisement

Methods and tools for the characterisation of a generic jet fuel

  • S. RichterEmail author
  • M. Braun-Unkhoff
  • T. Kathrotia
  • C. Naumann
  • T. Kick
  • N. Slavinskaya
  • U. Riedel
Original Paper
  • 44 Downloads

Abstract

The demand for producing environmentally friendly jet fuels raises the question how to design a jet fuel that matches predefined properties. Targets to be matched are, e.g., energy content or less harmful emission characteristics. A further major challenge for the production of new synthetic jet fuels is their availability for the required certification process in sufficient quantities within an appropriate time frame and at reasonable cost. This implies the need for tools for the formulation of synthetic jet fuels which have mostly a component pattern that differs from Jet A-1 made from crude-oil. In the present work, to address these challenges, a new approach will be presented to be able to design a synthetic jet fuel from scratch with preselected and well-defined physical and chemical properties. The development of a chemical kinetic reaction mechanism able to describe the oxidation of a generic fuel consisting of only a few representative components of the major molecule classes occurring in jet fuels. n-Dodecane, cyclohexane, and isooctane were chosen as single fuel components, and their global combustion properties, i.e., laminar burning velocity and ignition delay time, were measured. These experimental data were used for the validation of the reaction mechanisms, first developed for each single fuel component, and then combined to the reaction mechanism for the generic fuel under consideration. The last step is the further optimization and reduction of the generic fuel reaction mechanism to ensure its suitability for the integration in numerical simulation to tackle the combustion of a synthetic fuel under practical conditions, e.g., in CFD simulations.

Keywords

Generic fuel Fuel components and properties Emissions Laminar burning velocity Ignition delay time Modelling 

Notes

Acknowledgements

The authors thank the Federal Ministry for Economic Affairs and Energy for funding InnoTreib and all project partners for an excellent collaboration.

References

  1. 1.
    Braun-Unkhoff, M., Riedel, U., Wahl, C.: About the emissions of alternative jet fuels. CEAS Aeronaut. J. 8(l), 167–180 (2017)CrossRefGoogle Scholar
  2. 2.
    Braun-Unkhoff, M., Kathrotia, T., Rauch, B., Riedel, U.: About the interaction between composition and performance of alternative jet fuels. CEAS Aeronaut. J. 7(1), 83–94 (2016)CrossRefGoogle Scholar
  3. 3.
    InnoTreib: Innovative Treibstoffe der Zukunft, Project funded by Bundesministerium für Wirtschaft und Energie, Germany, 2014–2017Google Scholar
  4. 4.
    Eberius, H., Kick, T.: Stabilization of premixed conical methane flames at high pressures. Ber. Bunsenges. Phys. Chem. 96(10), 1416–1419 (1992)CrossRefGoogle Scholar
  5. 5.
    Kick, T., Kathrotia, T., Braun-Unkhoff, M., Riedel, U.: An experimental and modeling study of laminar flame speeds of alternative aviation fuels. In: Proceedings of ASME Turbo Expo 2011, GT2011-45606 (2011)Google Scholar
  6. 6.
    Kick, T., Herbst, J., Marquetand, J., Braun-Unkhoff, M., Naumann, C., Riedel, U.: An experimental and modeling study of burning velocities of possible future synthetic jet fuel. Energy 43(1), 111–123 (2012)CrossRefGoogle Scholar
  7. 7.
    Mzé-Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, T., Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J., Naumann, C., Riedel, U.: Oxidation of a coal-to-liquid synthetic jet fuel: experimental and chemical kinetic modeling study. Energy Fuels 26(10), 6070–6079 (2012)CrossRefGoogle Scholar
  8. 8.
    Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick, T., Naumann, C., Riedel, U., Thomas, L.: Experimental and detailed kinetic model for the oxidation of a gas to liquid (GtL) jet fuel. Combust. Flame 161, 835–847 (2014)CrossRefGoogle Scholar
  9. 9.
    Richter, S., Raida, M.B., Naumann, C., Riedel, U.: Measurement of the laminar burning velocity of neat jet fuel components. In: Proceedings of the World Congress on Momentum, Heat and Mass Transfer (MHMT’16), CSP 115 (2016)Google Scholar
  10. 10.
    Richter, S., Naumann, C., Riedel, U.: Experimental study on the combustion properties of an alcohol-to-jet fuel. In: Proceedings of the 2nd World Congress on Momentum, Heat and Mass Transfer (MHMT’17), CSP 107 (2017)Google Scholar
  11. 11.
    Richter, S., Kathrotia, T., Naumann, C., Kick, T., Slavinskaya, N., Braun-Unkhoff, M., Riedel, U.: Experimental and modeling study of farnesane. Fuel 215, 22–29 (2018)CrossRefGoogle Scholar
  12. 12.
    Kumar, K., Sung, C.J.: Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combust. Flame 151, 209–224 (2007)CrossRefGoogle Scholar
  13. 13.
    Kumar, K., Freeh, J.E., Sung, C.J., Huang, Y.: Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures. J. Propul. Power 23(2), 428–436 (2007)CrossRefGoogle Scholar
  14. 14.
    Galmiche, B., Halter, F., Foucher, F.: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein length of iso-octane/air mixtures. Combust. Flame 159, 3286–3299 (2012)CrossRefGoogle Scholar
  15. 15.
    Hui, X., Das, A.K., Kumar, K., Sung, C.-J., Dooley, S., Dryer, F.L.: Laminar flame speeds and extinction stretch rates of selected aromatic hydrocarbons. Fuel 97, 695–702 (2012)CrossRefGoogle Scholar
  16. 16.
    Kumar, K., Sung, C.J.: flame propagation and extinction characteristics of neat surrogate fuel components. Energy Fuels 24, 3840–3849 (2010)CrossRefGoogle Scholar
  17. 17.
    Biet, J., Hakka, M.H., Warth, V., Glaude, P.-A., Battin-Leclerc, F.: Experimental and modeling study of the low-temperature oxidation of large alkanes. Energy Fuels 22(4), 2258–2269 (2008)CrossRefGoogle Scholar
  18. 18.
    Fieweger, K., Blumenthal, R., Adomeit, G.: Shock-tube investigations on the self-ignition of hydrocarbon–air mixture at high pressures. In: 25th Symposium (International) an Combustion, pp. 1579–1585 (1994)Google Scholar
  19. 19.
    Davidson, D.F., Gauthier, B.M., Hanson, R.K.: Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures. Proc. Combust. Inst. 30, 1175–1182 (2005)CrossRefGoogle Scholar
  20. 20.
    He, X., Donovan, M.T., Zigler, B.T., Palmer, T.R., Walton, S.M., Wooldridge, M.S., Atreya, A.: An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions. Combust. Flame 142, 266–275 (2005)CrossRefGoogle Scholar
  21. 21.
    Li, S., Campos, A., Davidson, D.F., Hanson, R.K.: Shock tube measurements of branched alkane ignition delay times. Fuel 118, 398–405 (2014)CrossRefGoogle Scholar
  22. 22.
    Sirjean, B., Buda, F., Hakka, H., Glaude, P.A., Fournet, R., Warth, V., Battin-Leclerc, F., Ruiz-Lopez, M.: The autoignition of cyclopentane and cyclohexane in a shock tube. Proc. Combust. Inst. 31, 277–284 (2007)CrossRefGoogle Scholar
  23. 23.
    Daley, S.M., Berkowitz, A.M., Oehlschlaeger, M.A.: A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. Int. J. Chem. Kinet. 40(10), 624–634 (2008)CrossRefGoogle Scholar
  24. 24.
    Hong, Z., Lam, K.-L., Davidson, D.F., Hanson, R.K.: A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures. Combust. Flame 158, 1456–1468 (2011)CrossRefGoogle Scholar
  25. 25.
    Comandini, A., Dubois, T., Abid, S., Chaumeix, N.: Comparative study on cyclohexane and decalin oxidation. Energy Fuels 28, 714–724 (2014)CrossRefGoogle Scholar
  26. 26.
    Tian, Z., Zhang, Y., Yang, F., Pan, L., Jiang, X., Huang, Z.: Comparative Study of experimental and modeling autoignition of cyclohexane, ethylcyclohexane, and n-propylcyclohexane. Energy Fuels 28, 7159–7167 (2014)CrossRefGoogle Scholar
  27. 27.
    Goldsborough, S.S.: A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region. Combust. Flame 156, 1248–1262 (2009)CrossRefGoogle Scholar
  28. 28.
    Hartmann, M., Gushterova, I., Fikri, M., Schulz, C., Schießl, R., Maas, U.: Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: high-pressure shock-tube experiments and kinetics modeling. Combust. Flame 158, 172–178 (2011)CrossRefGoogle Scholar
  29. 29.
    Di, H., He, X., Zhang, P., Wang, Z., Wooldridge, M.S., Law, C.K., Wang, C., Shuai, S., Wang, J.: Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame 161, 2531–2538 (2014)CrossRefGoogle Scholar
  30. 30.
    Won, S.H., Haas, F.M., Tekawade, A., Kosiba, G., Oehlschlaeger, M.A., Dooley, S., Dryer, F.L.: Combustion characteristics of C4 iso-alkane oligomers: experimental characterization of iso-dodecane as a jet fuel surrogate component. Combust. Flame 165, 137–143 (2016)CrossRefGoogle Scholar
  31. 31.
    Vranckx, S., Lee, C., Chakravarty, H.K., Fernandes, R.X.: A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proc. Combust. Inst. 34, 377–384 (2013)CrossRefGoogle Scholar
  32. 32.
    Edwards, T., Maurice, L.Q.: Surrogate mixtures to represent complex aviation and rocket fuels. J. Propuls. Power 17(2), 461–466 (2001)CrossRefGoogle Scholar
  33. 33.
    Kintech Laboratory: Chemical Workbench®. http://www.kintechlab.com/products/chemical-workbench/. Zugriff am 03. 12. 2018
  34. 34.
    Methling, T., Braun-Unkhoff, M., Riedel, U.: A novel linear transformation model for the analysis and optimisation of chemical kinetics. Combust. Theory Model. 21(3), 503–528 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.Institute of Combustion TechnologyGerman Aerospace Center (DLR)StuttgartGermany

Personalised recommendations