Advertisement

Gust load alleviation for a long-range aircraft with and without anticipation

  • Nicolas FezansEmail author
  • Hans-Dieter Joos
  • Christoph Deiler
Original Paper
  • 25 Downloads

Abstract

This paper presents an overview of the DLR activities on active load alleviation in the CleanSky Smart Fixed Wing Aircraft project. The investigations followed two main research directions: the multi-objective, multi-model, structured controller design for the feedback load alleviation part and the use of Doppler LIDAR technologies for gust/turbulence anticipation. On this latter topic, the prior work made in the AWIATOR European FP6 project constituted a reference in terms of demonstrations and the objective was not to repeat these previous investigations with a real sensor in flight test but to develop new ideas for the exploitation of the Doppler LIDAR measurements for gust alleviation purposes. Very fruitful exchanges between industry partners and research organizations took place during this project and all the work presented in this paper has been made using a generic long-range benchmark provided by Airbus on the basis of the XRF-1 model.

Keywords

Gust load alleviation Multi-objective controller design Doppler LIDAR Feedforward load alleviation 

Nomenclature

ALC

Active load control(ler)

ALDCS

Active lift distribution control system, active load alleviation system developed for the Lockheed C5-A

AWIATOR

Aircraft wing advanced technology operation, European FP6 project investigating many innovative technologies for future and more efficient aircraft

BFGS

Broyden–Fletcher–Goldfarb–Shanno, a well-known quasi-Newton optimization algorithm

\(\hbox {C}^*, \hbox {C}^*\hbox {U}\)

Control concepts in the pitch axis based on the blending of the load factor and the pitch rate (with airspeed feedback for C\(^*\)U)

DELICAT

DEmonstration of LIdar-based CAT detection, European FP7 project on the detection of clear air turbulence

DLC

Direct lift control, control surfaces/effectors permitting to directly control the aircraft lift (i.e., not through variations of the angle of attack)

DLR

Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)

EFCS

Electronic flight control system

FBALC

Feedback active load controller, name of the feedback part of the herein proposed load alleviation functions

FOWT

Fast orthogonal wavelet transform

FP6

Sixth framework programme, European Union’s Research and Innovation funding programme for the period 2002–2006

FP7

Seventh framework programme, European Union’s Research and Innovation funding programme for the period 2007–2013

GCS

Gust control system

GLAS

Gust load alleviation system

GN

Gauss–Newton, optimization algorithm optimized for nonlinear least squares problems

HR

HTP root

HTP

Horizontal tailplane

IRS

Inertial reference system

LARS

Load alleviation and ride smoothing

LIDAR

Light detection and ranging

LQR

Linear-quadratic regulator

OLGA

Open loop gust alleviation

pdf

Probability density function

RCAH

Rate command attitude hold

RMS

Root mean square

SFWA

Smart fixed wing aircraft, integrated technology demonstrator (ITD) from the European cleanSky project

WR

Wing root

XRF-1

Generic long-range aircraft model designed by Airbus

Symbols

\(a_z, a_{z,{\mathrm{cmd}}}\)

Body frame vertical acceleration resp. commanded acceleration and due to all non-conservative forces, i.e., \(a_z=0 \Leftrightarrow \text {free fall}\)

\(a_{z,{\mathrm{sensor}}}\)

Measured and low-pass filtered vertical acceleration (in body frame)

\(C_i\)

i-th filter coefficient (\(i\in \llbracket 0,3\rrbracket\)) defining the horizontal companion representation of the third-order low-pass filter used to smooth the pilot commands, see equations (1517)

\(C_{i,j}\)

j-derivative of the \(C_i\) coefficient, j being either 0, Ma, or M

\(\delta _i\)

Control surface angle, i being “elevators”, “ailerons” (symmetrical deflections), or “spoilers” (symmetrical deflections)

\(\delta _{\mathrm{pitch}}\)

Normalized pilot pitch command (stick or control column)

\(F_z\)

Shear force

F(s)

Cutoff filter restricting the bandwidth of the controller

g

Gravity constant (\(\approx 9.81\) m/s)

\(\gamma _1, \gamma _2\)

Weighting factors for the Tikhonov regularization terms

\(\varGamma _1, \varGamma _2\)

Tikhonov matrices used to regularize the wind reconstruction problem

\(K_i\)

Controller gain for the control surface designated by i, with i being “elevators”, “ailerons” (symmetrical deflections), or “spoilers” (symmetrical deflections)

\(l_i\)

Lower bound on control surface deflections, i being “elevators”, “ailerons” (symmetrical deflections), or “spoilers” (symmetrical deflections)

m

Number of measurements used for the wind reconstruction

\(M, M_{\mathrm{ref}}\)

Vehicle mass resp. reference vehicle mass used for scheduling

\(Ma, Ma_{\mathrm{ref}}\)

Mach number resp. reference Mach number used for scheduling

\(M_x, M_y\)

Bending resp. torsion moment

\(\mu\)-synthesis

Robust control technique based on the minimization of the structured singular value \(\mu\)

n

Number of points/nodes in the wind reconstruction mesh

\(n_z, n_{z,{\mathrm{error}}}\)

Vertical load factor (in body frame) resp. error in the vertical load factor tracking

p

Number of parameters in the wind reconstruction model

\(P_i\)

i-th point/node of the wind reconstruction mesh (\(i\in \llbracket 1,n\rrbracket )\)

\(\mathbb {R}, \mathbb {R}^+\)

Set of all real numbers resp. positive real numbers (0 included)

\(\sigma _i\)

Standard deviation for the i-th measurement

T

Symmetrical threshold function, see Eq. (20)

\(\tau _{\mathrm{lead}}, \tau _{\mathrm{lag}}\)

Lead resp. lag time used to define the boundaries of the reconstruction mesh, see Fig. 4

\(\theta\)

Vector of parameters being optimized in the maximum-likelihood wind reconstruction of Sect. 2.4

\(\theta ^{[k]}\)

Value of the parameter vector \(\theta\) at iteration k

\(\widehat{\theta }\)

Most likely parameter vector \(\theta\) given the considered set of measurements \(\{z_i\ \vert \ i\in \llbracket 1,m\rrbracket \}\)

\(\varTheta\)

Pitch angle

\(V_{\mathrm{TAS}}\)

True airspeed

\(z_i, y_i(\tilde{\theta })\)

Measurements used for the wind reconstruction resp. corresponding model outputs for given values \(\tilde{\theta }\) of the parameter vector

Notes

Acknowledgements

Most of this work has been funded within the framework of the European CleanSky Joint Technology Initiative - Smart Fixed Wing Aircraft (Grant Agreement Number CSJU-GAM-SFWA-2008-01) and is currently being pursued within the framework of the European CleanSky2 Joint Technology Initiative - Airframe (Grant Agreement Number CS2JU-AIR-GAM-2014-2015-01 Annex 1, Issue B04, October 2nd, 2015) being part of the Horizon 2020 research and Innovation framework programme of the European Commission.

The authors would like to thank all the partners of the Smart Fixed Wing Aircraft WP1.2 for the very interesting and open discussions all along the project, Airbus for providing the XRF1 model data, as well as Thiemo Kier for his work on the benchmark model development based on these data.

References

  1. 1.
    ISO 2631-1:1997: Mechanical vibration and shock—evaluation of human exposure to whole-body vibration— part 1: general requirements (1997)Google Scholar
  2. 2.
    Barbaresco, F.: Airport radar monitoring of wake vortex in all weather conditions. In: European Radar Conference (EuRAD), pp. 85–88 (2010)Google Scholar
  3. 3.
    Barbaresco, F., Meier, U.: Radar monitoring of a wake vortex: electromagnetic reflection of wake turbulence in clear air. Comptes Rend. Phys. 11(1), 54–67 (2010)CrossRefGoogle Scholar
  4. 4.
    Böhret, H., Krag, B., Skudridakis, J.: OLGA—an open-loop gust alleviation system. In: Proceedings of the AGARD CP 384 Meeting. Toronto, Canada (1985)Google Scholar
  5. 5.
    Cézard, N., Besson, C., Dolfi-Bouteyre, A., Lombard, L.: Airflow characterization by Rayleigh-Mie lidars. Aerospace Lab. 1, 1–4 (2009)Google Scholar
  6. 6.
    Ehlers, J., Fezans, N.: Airborne doppler LiDAR sensor parameter analysis for wake vortex impact alleviation purposes. In: Bordeneuve-Guibé, J., Drouin, A., Roos, C. (eds.) Advances in aerospace guidance, navigation and control, pp. 433–453. Springer, Berlin (2015)Google Scholar
  7. 7.
    Ehlers, J., Fischenberg, D., Niedermeier, D.: Wake identification based wake impact alleviation control. In: Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Atlanta, GA, USA (2014). AIAA-2014-2591 (2014)Google Scholar
  8. 8.
    Fezans, N.: An unusual structure for a feedforward gust load alleviation controller. In: Proceedings of the 2017 CEAS EuroGNC Conference. Warsaw, Poland (2017)Google Scholar
  9. 9.
    Fezans, N., Joos, H.D.: Integrated active gust and turbulence load alleviation functions. Tech. rep., DLR-IB-111-2014/51 - CleanSky SFWA OP1.2.3-25, DLR, Germany (2014)Google Scholar
  10. 10.
    Fezans, N., Joos, H.D.: Combined feedback and LIDAR-based feedforward active load alleviation. In: AIAA Atmospheric Flight Mechanics Conference, AIAA AVIATION Forum (2017). AIAA-2017-3548, (2017)  https://doi.org/10.2514/6.2017-3548
  11. 11.
    Fezans, N., Schwithal, J., Fischenberg, D.: In-flight remote sensing and characterization of gusts, turbulence, and wake vortices. In: Proceedings of the 2015 German Aerospace Congress (Deutscher Luft- und Raumfahrtkongress). Rostock, Germany (2015)Google Scholar
  12. 12.
    Fezans, N., Schwithal, J., Fischenberg, D.: In-flight remote sensing and identification of gusts, turbulence, and wake vortices using a Doppler LIDAR. CEAS Aeronautical Journal 8(2) (2017).  https://doi.org/10.1007/s13272-017-0240-9
  13. 13.
    Geisbauer, S., Löser, T.: Towards the investigation of unsteady spoiler aerodynamics. In: 35th AIAA Applied Aerodynamics Conference (2017). http://elib.dlr.de/112800/
  14. 14.
    Gerz, T., Holzäpfel, F., Darracq, D.: Commercial aircraft wake vortices. Progr. Aerospace Sci. 38, 181–208 (2002)CrossRefGoogle Scholar
  15. 15.
    Hahn, K.U., Hecker, S.: Gust load alleviation system. Tech. rep., DLR, Braunschweig, Germany (2004). AWIATOR, Technical Report, DLR-TR-3.1.1-12Google Scholar
  16. 16.
    Hahn, K.U., König, R.: Attas flight test and simulation results of the advanced gust management system LARS. In: Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Hilton Head, SC, USA (1992)Google Scholar
  17. 17.
    Hargrove, W.J.: The C-5A active lift distribution control system. Tech. rep., NASA (1976). N76-31148 (1976)Google Scholar
  18. 18.
    Hecker, S.: Proposal of gust load alleviation system using adaptive elements. Tech. rep., DLR, Oberpfaffenhofen, Germany (2005). AWIATOR, Technical Report, DLR-TR-3.1.1-13 (2005)Google Scholar
  19. 19.
    Hecker, S., Hahn, K.U.: Gust computation system. Tech. rep., DLR, Oberpfaffenhofen, Germany (2003). AWIATOR, Technical Report, DLR-TR-3.1.1-11 (2003)Google Scholar
  20. 20.
    Hecker, S., Hahn, K.U.: Proposal of gust load alleviation system using turbulence sensor and adaptive elements. Tech. rep., DLR, Oberpfaffenhofen, Germany (2006). AWIATOR, Technical Report, DLR-TR-3.1.1-14 (2006)Google Scholar
  21. 21.
    Herbst, J., Vrancken, P.: Design of a monolithic Michelson interferometer for fringe imaging in a near-field, UV, direct-detection Doppler wind lidar. Appl. Opt. 55(25), 6910–6929 (2016)CrossRefGoogle Scholar
  22. 22.
    Hill, C., Harris, M.: Remote Sensing (UpWind WP6)—QinetiQ Lidar Measurement Report. Tech. Rep. QINETIQ/TS/FPPS/TR0900813, QinetiQ (2010)Google Scholar
  23. 23.
    Hirschberger, M.C.: Beiträge zur Erfassung von Wirbelschleppen mit Lidar - Simulation und Analyse rückgestreuter Signale zur Windfeldbestimmung vor Flugzeugen. Ph.D. thesis, Ludwig–Maximilians-Universität, Munich, Germany (2013)Google Scholar
  24. 24.
    Hoffmann, G.: Stabilisierung, Böenkompensation und Schwingungsdämpfung am elastischen, beweglichen Flugzeugmodell im Windkanal. Tech. Rep. DLR-FB 74-44, DFVLR (now part of DLR), Cologne, Germany (1976)Google Scholar
  25. 25.
    Jeanneau, M., Aversa, N., Delannoy, S., Hockenhull, M.: AWIATOR’s Study of a Wing Load Control: Design and Flight–Test Results. In: Proceedings of the \(16^{\rm th}\) IFAC Symposium on Automatic Control in Aerospace. Saint-Petersburg, Russia (2004)Google Scholar
  26. 26.
    Joos, H.D.: Multi-Objective Parameter Synthesis (MOPS). In: J.F. Magni, S. Bennani, J. Terlouw (eds.) Robust Flight Control: A Design Challenge, Lecture notes in control and information sciences, vol. 224, pp. 199–217. Springer (1997)Google Scholar
  27. 27.
    Joos, H.D.: A methodology for multi-objective design assessment and flight control synthesis tuning. Aerospace Sci. Technol. 3(3), 161–176 (1999)CrossRefzbMATHGoogle Scholar
  28. 28.
    Joos, H.D.: Worst case parameter search based clearance using parallel nonlinear programming methods. In: A. Varga, A. Hansson, G. Puyou (eds.) Optimization Based Clearance of Flight Control Laws, Lecture Notes in Control and Information Science, vol. 416. Springer (2011)Google Scholar
  29. 29.
    Joos, H.D., Bals, J., Looye, G., Schnepper, K., Varga, A.: A multi-objective optimisation based software environment for control systems design. In: Proceedings of the 2002 IEEE International Conference on Control Applications and International Symposium on Computer Aided Control Systems Design (CCA/CACSD). Glasgow, Scotland, UK (2002)Google Scholar
  30. 30.
    Khalil, A., Fezans, N.: Performance enhancement of gust load alleviation systems for flexible aircraft using H optimal control with preview. In: AIAA Scitech Forum. San Diego, CA, USA (2019).  https://doi.org/10.2514/6.2019-0822.
  31. 31.
    Khalil, A., Fezans, N.: A Multi-Channel H preview control approach to load alleviation function design. In: 5th CEAS Conference on Guidance, Navigation & Control. Milano, Italy (2019)Google Scholar
  32. 32.
    König, R., Hahn, K.U.: Load alleviation and ride smoothing investigations using ATTAS. In: Proceedings of the \(17^{\rm th}\) Congress of the International Council of the Aeronautical Sciences. Stockholm, Sweden (1990)Google Scholar
  33. 33.
    König, R., Hahn, K.U., Winter, J.: Advanced gust management systems—lessons learned and perspectives. In: Proceedings of the AGARD Flight Mechanics Panel Symposium on Active Control Technology: Applications and Lessons Learned. Torino, Italy (1994)Google Scholar
  34. 34.
    Kordt, M., Ballauf, C., Joos, H.D.: Load alleviation for large aeroplanes by active mode control of the coplanar motion of the horizontal tailplane. In: Proceedings of IFASD International Forum on Aeroelasticity and Structural Dynamics. Madrid, Spain (2001)Google Scholar
  35. 35.
    Krag, B.: The wind tunnel behaviour of a scaled model with a gust alleviation system in a deterministic gust field. Trans. Inst. Meas. Control 1, 3 (1979)CrossRefGoogle Scholar
  36. 36.
    Kubica, F., Madelaine, B.: Passenger comfort improvement by integrated control law design. In: Proceedings of the RTO AVT Specialists’ Meeting on “Structural Aspects of Flexible Aircraft Control”. Ottawa, Canada (1999)Google Scholar
  37. 37.
    Looye, G., Joos, H.D.: Design of robust dynamic inversion control laws using multi-objective optimization. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada (2001). AIAA-2001-4285 (2001)Google Scholar
  38. 38.
    Looye, G., Joos, H.D., Willemsen, D.: Application of an optimization-based design process for robust autoland control laws. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada (2001)Google Scholar
  39. 39.
    Looye, G., Leitner, M.: XRF-1 model guide. Tech. rep., CleanSky SFWA-ITD D1.2.4.3-5, DLR, Oberpfaffenhofen, Germany (2013)Google Scholar
  40. 40.
    Luckner, R.: Modeling and simulation of wake vortex encounters: State-of-the-art and challenges. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference. Minneapolis, MN, USA (2012). AIAA-2012-4633 (2012)Google Scholar
  41. 41.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 207(1167), 187–217 (1980)CrossRefGoogle Scholar
  42. 42.
    Neece, R.T., Britt, C.L., White, J.H., Mudukutore, A., Nguyen, C., Hooper, B.: Wake vortex tracking using a 35 GHz pulsed Doppler radar. In: Proceedings of the \(5^{\rm th}\) NASA Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop. Fairfax, VA, USA (2005)Google Scholar
  43. 43.
    Ossmann, D., Poussot-Vassal, C.: Minimal order disturbance estimator design for aircraft load alleviation control. In: 2018 IEEE Conference on Control Technology and Applications (CCTA). IEEE, Copenhagen, Denmark (2018).  https://doi.org/10.1109/CCTA.2018.8511549 Google Scholar
  44. 44.
    Poussot-Vassal, C., Quero, D., Vuillemin, P.: Data-driven approximation of a high fidelity gust-oriented flexible aircraft dynamical model. IFAC-PapersOnLine 51(2), 559–564 (2018)CrossRefGoogle Scholar
  45. 45.
    Rabadan, G.J., Schmitt, N.P., Pistner, T., Rehm, W.: Airborne lidar for automatic feedforward control of turbulent in-flight phenomena. J. Aircr. 47(2), 392–403 (2010)CrossRefGoogle Scholar
  46. 46.
    Regan, C.D., Jutte, C.V.: Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft. Tech. rep, TM-2012-216008, NASA, Dryden Flight Research Center, Edwards, CA, USA (2012)Google Scholar
  47. 47.
    Schmitt, N.P., Rehm, W., Pistner, T., Zeller, P., Reithmeier, G., Stilkerich, S., Schertler, K., Diehl, H., Zinner, H.: The AWIATOR airborne LIDAR turbulence sensor. In: Proceedings of the 2005 German Aerospace Congress (Deutscher Luft- und Raumfahrtkongress / DLRK). Friedrichshafen, Germany (2005). DGLR-2005-067 (2005)Google Scholar
  48. 48.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston and Sons, Washington, DC (1977)zbMATHGoogle Scholar
  49. 49.
    Tikhonov, A.N., Goncharsky, A., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Springer-Science+Business Media, B.V., Dordrecht, The Netherlands (1995). ISBN-13: 978-0-7923-3583-2 (1995)Google Scholar
  50. 50.
    Vrancken, P.: Airborne remote detection of turbulence with forward-pointing LIDAR. In: R. Sharman, T. Lane (eds.) Aviation Turbulence - Processes, Detection, Prediction, chap. 22, pp. 443–464. Springer (2016). ISBN: 978-3-319-23629-2 (2016)Google Scholar
  51. 51.
    Vrancken, P., Wirth, M., Ehret, G., Barny, H., Rondeau, P., Veerman, H.: Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: system design and performance. Appl. Opt. 55(32), 9314–9328 (2016)CrossRefGoogle Scholar
  52. 52.
    Vrancken, P., Wirth, M., Ehret, G., Witschas, B., Veerman, H., Tump, R., Barny, H., Rondeau, P., Dolfi-Bouteyre, A., Lombard, L.: Flight tests of the DELICAT airborne LIDAR system for remote clear air turbulence detection. In: 27th International Laser Radar Conference. New York City, NY, USA (2015).  https://doi.org/10.1051/epjconf/201611914003
  53. 53.
    Wolkensinger, C.: Vergleich messtechnischer Konzepte zur bordgestützten Ermittlung atmosphärischer Störphänomene. DLR report DLR-IB-111-2010/35, DLR, Institute of Flight Systems, Braunschweig, Germany (2010)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2019

Authors and Affiliations

  1. 1.DLR, Institute of Flight SystemsBrunswickGermany
  2. 2.DLR, Institute of System Dynamics and ControlWeßlingGermany

Personalised recommendations