Electrostatic charging of an aircraft due to airborne dust particles impacts

  • Theodore I. LekasEmail author
Original Paper


An approach for computing the electrostatic charging of an aircraft flying in a soil dust cloud is discussed. This approach combines a semi-empirical equation obtained by flight test data, atmospheric dust particle concentrations obtained either by numerical weather forecasting models or in situ measurements, a vortex lattice-based aerodynamic simulation model, and the aerodynamic and inertial characteristics of soil dust particles. Application of the proposed approach showed that the aircraft acquires an equilibrium electrostatic charge in a matter of seconds. This means that the electrostatic charging of the aircraft due to soil dust is as important as any other source of electrostatic charging.


Dust Particles Aircraft Electrostatic Charging 

List of symbols


Dust particle concentration (µg/m3)


Dust particle drag coefficient


Dust particle diameter (µm)

\(\dot {m}\)

Dust mass rate impacted on a given surface (µg/s)


Dust particle mass (µg)


Electrostatic charge per kg of impacted dust mass on a given surface (µC/kg)

\(\dot {Q}\)

Electrostatic charging rate of a given surface (µC/s)


Total electrostatic charge acquired by a given surface (C)


Surface or reference area (m2)


Local air flow velocity (m/s)


Local dust particle velocity (m/s)


Flight speed (m/s)


Particle weight (N)


Air density (kg/m3)



Initial plane


Target plane


  1. 1.
    Guffond, D.: Captation de glace sur une surface non protegée au cours d’un vol en conditions givrantes. Recherche et établissement d’une methode de calcul. ONERA, RT no 3/5146 SY, 1981Google Scholar
  2. 2.
    Perala, R.A.: A critical review of precipitation static research since the 930’s and comparison to aircraft charging by dust. In: Electro Magnetic Applications Inc, 7655 W. Mississippi Ave. Suite 300 Lakewood, CO USA 80226. (No further information is available on the Web) Google Scholar
  3. 3.
    Lekas, T.I., Kushta, J., Solomos, S., Kallos, G.: Some considerations related to flight in dusty conditions. J. Aerosp. Oper. 3, 45–56 (2014)Google Scholar
  4. 4.
    Pierce, E.T.: Perturbations produced by Jet aircraft on the Earth’s electric field. J. Appl. Meteorol. Notes Corresp. 3, 805–806 (1964)CrossRefGoogle Scholar
  5. 5.
    Sorokin, A., Vancassel, X., Mirabel, P.: Emission of ions and charged soot particles by aircraft engines. Atmos. Chem. Phys. 3, 325–334 (2003)CrossRefGoogle Scholar
  6. 6.
    Milluzzo, J., Sydney, A., Rauleder, J., Leishman, J.G.: In-ground-effect aerodynamics of rotors with different blade tips. In: 66th Annual Forum of the American Helicopter Society, Phoenix, AZ (2010)Google Scholar
  7. 7.
    Gobbi, G.P., Barnaba, F., Giorgi, R., Santacasa, A.: Altitude-resolved properties of a Saharan dust event over the Mediterranean. Atmos. Environ. 34, 5119–5127 (2000)CrossRefGoogle Scholar
  8. 8.
    Spyrou, C., Mitsakou, C., Kallos, G., Louka, P., Vlastou, G.: An improved limited area model for describing the dust cycle in the atmosphere. J. Geophys. Res. 115, 1–19 (2010)CrossRefGoogle Scholar
  9. 9.
    Kok, J.F., Parteli, E.J.R., Michaels, T.I., BouKaram, D.: The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012)CrossRefGoogle Scholar
  10. 10.
    Matsusaka, S., Maruyama, H., Matsuyama, T., Ghadiri, M.: Triboelectric charging of powders: a review. Chem. Eng. Sci. 65(22), 5781–5807 (2010)CrossRefGoogle Scholar
  11. 11.
    Solomos, S., Ansmann, A., Mamouri, R.E., Binietoglou, I., Patlakas, P., Marinou, E., Amiridis, V.: Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015. Atmos. Chem. Phys. 17, 4063–4079 (2017)CrossRefGoogle Scholar
  12. 12.
    Beard, K.V.: Terminal velocity and shape of cloud precipitation drops aloft. J. Atmos. Sci. 33, 851–864 (1976)CrossRefGoogle Scholar
  13. 13.
    Pechacek, R.E., Greig, J.R., Murphy, D.P., Spelz, J.: Electrostatic charging of the CH-53E helicopter. NRL Memorandum Report 5676, November 29 (1985)Google Scholar
  14. 14.
    Katz, J., Plotkin, A.: Low-Speed Aerodynamics. From Wing Theory to Panel Method, Chaps. 9 and 10. McGraw-Hill Inc, New York (1991)Google Scholar
  15. 15.
    Liu, X., Zhong, Y., He, Q., Yang, X., Mamtimin, A., Huo, W.: Analysis of mass concentration of atmospheric particulate matter in a sandstorm course and its affecting factors in the Taklimakan Desert. Sci. Cold Arid Reg. 4(3), 0259–0264 (2012)CrossRefGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2018

Authors and Affiliations

  1. 1.Department of Aerodynamics and Flight MechanicsHellenic Air Force Academy, Dekelia AFBDekeliaGreece

Personalised recommendations