Advertisement

Comparison of de-novo assembly tools for plasmid metagenome analysis

  • Sachin Kumar Gupta
  • Shahbaz Raza
  • Tatsuya UnnoEmail author
Research Article

Abstract

Background

With the advent of next-generation sequencing techniques, culture-independent metagenome approaches have now made it possible to predict possible presence of genes in the environmental bacteria most of which may be non-cultivable. Short reads obtained from the deep sequencing can be assembled into long contigs some of which include plasmids. Plasmids are the circular double stranded DNA in bacteria and known as one of the major carriers of antibiotic resistance genes.

Objective

Metagenomic analyses, especially focused on plasmids, could help us predict dissemination mechanisms of antibiotic resistance genes in the environment. However, with the availability of a myriad of metagenomic assemblers, the selection of the most appropriate metagenome assembler for the plasmid metagenome study might be challenging. Therefore, in this study, we compared five open source assemblers to suggest most effective way of plasmid metagenome analysis.

Methods

IDBA-UD, MEGAHIT, SPAdes, SOAPdenovo2, and Velvet are compared for conducting plasmid metagenome analyses using two water samples.

Results

Our results clearly showed that abundance and types of antibiotic resistance genes on plasmids varied depending on the selection of assembly tools. IDBA-UD and MEGAHIT demonstrated the overall best assembly statistics with high N50 values with higher portion of longer contigs.

Conclusion

These two assemblers also detected more diverse plasmids. Among the two, MEGAHIT showed more memory efficient assembly, therefore we suggest that the use of MEGAHIT for plasmid metagenome analysis may offer more diverse plasmids with less computer resource required. Here, we also summarized a fundamental plasmid metagenome work flow, especially for antibiotic resistance gene investigation.

Keywords

Plasmid metagenome MEGAHIT IDBA-UD SPAdes SOAPdenovo2 Velvet 

Notes

Acknowledgements

We are grateful to Sustainable Agriculture Research Institute (SARI) in Jeju National University for providing the experimental facilities. This research was a part of the project titled “Construction of Analysis and application of marine aquaculture genome information.” funded by the Ministry of Oceans and Fisheries, Korea.

Supplementary material

13258_2019_839_MOESM1_ESM.pptx (46 kb)
Supplementary material 1 (PPTX 45 kb)
13258_2019_839_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 12 kb)

References

  1. Breitwieser FP, Lu J, Salzberg SL (2017) A review of methods and databases for metagenomic classification and assembly. Brief Bioinform.  https://doi.org/10.1093/bib/bbx120 Google Scholar
  2. Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60.  https://doi.org/10.1038/nmeth.3176 CrossRefGoogle Scholar
  3. Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform.  https://doi.org/10.1186/1471-2105-13-238 Google Scholar
  4. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478CrossRefGoogle Scholar
  5. Davies AJ, Evans JG (1980) An analysis of the one-dimensional steady-state glow discharge. J Phys D Appl Phys.  https://doi.org/10.1088/0022-3727/13/9/001 (Software) Google Scholar
  6. Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249.  https://doi.org/10.1016/S1074-5521(98)90108-9 CrossRefGoogle Scholar
  7. Huerta-Cepas J, Szklarczyk D, Forslund K et al (2016) EGGNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293.  https://doi.org/10.1093/nar/gkv1248 CrossRefGoogle Scholar
  8. Hyatt D, Chen GL, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119.  https://doi.org/10.1186/1471-2105-11-119 CrossRefGoogle Scholar
  9. Jia B, Raphenya AR, Alcock B et al (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573.  https://doi.org/10.1093/nar/gkw1004 CrossRefGoogle Scholar
  10. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  11. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731.  https://doi.org/10.1016/j.jmb.2015.11.006 CrossRefGoogle Scholar
  12. Krawczyk PS, Lipinski L, Dziembowski A (2017) PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 46:e35–e35.  https://doi.org/10.1093/nar/gkx1321 CrossRefGoogle Scholar
  13. Kremkow B, Lee KH (2013) Next-generation sequencing technologies and their potential impact on CHO cell-based biomanufacturing. Pharm Bioprocess 1:455–465.  https://doi.org/10.4155/pbp.13.52 CrossRefGoogle Scholar
  14. Kulikov AS, Prjibelski AD, Tesler G et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefGoogle Scholar
  15. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595.  https://doi.org/10.1093/bioinformatics/btp698 CrossRefGoogle Scholar
  16. Li D, Liu CM, Luo R et al (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676.  https://doi.org/10.1093/bioinformatics/btv033 CrossRefGoogle Scholar
  17. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18CrossRefGoogle Scholar
  18. Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428.  https://doi.org/10.1093/bioinformatics/bts174 CrossRefGoogle Scholar
  19. Sentchilo V, Mayer AP, Guy L et al (2013) Community-wide plasmid gene mobilization and selection. ISME J 7:1173–1186.  https://doi.org/10.1038/ismej.2013.13 CrossRefGoogle Scholar
  20. van der Walt AJ, van Goethem MW, Ramond JB et al (2017) Assembling metagenomes, one community at a time. BMC Genom 18:521.  https://doi.org/10.1186/s12864-017-3918-9 CrossRefGoogle Scholar
  21. Vollmers J, Wiegand S, Kaster AK (2017) Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective—not only size matters! PLoS One 12:e0169662.  https://doi.org/10.1371/journal.pone.0169662 CrossRefGoogle Scholar
  22. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829.  https://doi.org/10.1101/gr.074492.107 CrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea 2019

Authors and Affiliations

  • Sachin Kumar Gupta
    • 1
  • Shahbaz Raza
    • 1
  • Tatsuya Unno
    • 1
    • 2
    Email author
  1. 1.Faculty of Biotechnology, College of Applied Life SciencesSARI, Jeju National UniversityJejuRepublic of Korea
  2. 2.Subtropical/Tropical Organism Gene BankJeju National UniversityJejuRepublic of Korea

Personalised recommendations