Advertisement

Genome-wide association study of vitamin E using genotyping by sequencing in sesame (Sesamum indicum)

  • Qiang He
  • Feifei Xu
  • Myeong-Hyeon Min
  • Sang-Ho Chu
  • Kyu-Won Kim
  • Yong-Jin ParkEmail author
Research Article

Abstract

Background

At least eight structurally related forms of vitamin E occur in nature, four tocopherols and four tocotrienols, all of which are potent membrane-soluble antioxidants. In this study, we detected two major isoforms in sesame (Sesamum indicum L.) seed: γ-tocopherol and β-tocotrienol. The objective of this study is to investigate the genetic basis of these vitamin E isoforms.

Methods

We  conducted a genome-wide association study (GWAS) using 5962 genome-wide markers, acquired from 96 core sesame accessions. The GWAS was performed using generalized linear (GLM) and mixed linear (MLM) models.

Results

LG08_6621957, on chromosome 8, was detected as having a significant association with γ-tocopherol in both models. It explained 20.9% of γ-tocopherol variation in sesame. For β-tocotrienol, no significant loci were detected according to the two models, but one locus, SLG03_13104062, explained 17.8% of the phenotypic variation. Based on structure and phylogenetic studies, the 96 accessions were clearly clustered into two subpopulations.

Conclusion

This study on sesame demonstrates and provides an evidence that genotyping by sequencing (GBS) based GWAS can be used to identifying important loci for small growing crops. The significant SNPs or genes could be useful for improving the vitamin E content in sesame breeding programs.

Keywords

Genotyping by sequencing Genome-wide association study Sesame Vitamin E 

Notes

Acknowledgements

This work was supported by the research grant of the Kongju National University in 2018.

Supplementary material

13258_2019_837_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2406 kb)
13258_2019_837_MOESM2_ESM.xlsx (41 kb)
Supplementary material 2 (XLSX 40 kb)
13258_2019_837_MOESM3_ESM.xlsx (39 kb)
Supplementary material 3 (XLSX 38 kb)

References

  1. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376Google Scholar
  2. Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13(10):1145–1155Google Scholar
  3. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21(9):1082–1087Google Scholar
  4. Chen S, Li H, Liu G (2006) Progress of vitamin E metabolic engineering in plants. Transgenic Res 15(6):655–665Google Scholar
  5. Cho EA, Lee CA, Kim YS, Baek SH, Reyes BG, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells 19(1):1Google Scholar
  6. Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127(3):1113–1124Google Scholar
  7. Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131(2):632–642Google Scholar
  8. Cook WB, Miles D (1992) Nuclear mutations affecting plastoquinone accumulation in maize. Photosynth Res 31(2):99–111Google Scholar
  9. DellaPenna D (2005) Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci 10(12):574–579Google Scholar
  10. Demurin Y, Skoric D, Karlovic D (1996) Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breed 115(1):33–36Google Scholar
  11. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379Google Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620Google Scholar
  13. Falk J, Krauß N, Dähnhardt D, Krupinska K (2002) The senescence associated gene of barley encoding 4-hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. J Plant Physiol 159(11):1245–1253Google Scholar
  14. Garcia I, Rodgers M, Lenne C, Rolland A, Sailland A, Matringe M (1997) Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325(3):761–769Google Scholar
  15. Garcia I, Rodgers M, Pepin R, Hsieh T-F, Matringe M (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119(4):1507–1516Google Scholar
  16. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Zhang Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967Google Scholar
  17. Jiang Q, Christen S, Shigenaga MK, Ames BN (2001) γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 74(6):714–722Google Scholar
  18. Kamal-Eldin A, Appelqvist L-Å (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701Google Scholar
  19. Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong Y-HH, Moshiri F (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7(5):384–400Google Scholar
  20. Kumar R, Raclaru M, Schüßeler T, Gruber J, Sadre R, Lühs W, Frentzen M (2005) Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579(6):1357–1364Google Scholar
  21. Li G-X, Lee M-J, Liu AB, Yang Z, Lin Y, Shih WJ, Yang CS (2011) δ-tocopherol is more active than α-or γ-tocopherol in inhibiting lung tumorigenesis in vivo. Cancer Prevention Res 4(3):404–413Google Scholar
  22. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399Google Scholar
  23. Liu C, Zhou Q, Dong L, Wang H, Liu F, Weng J, Xie C (2016) Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics 17(1):915Google Scholar
  24. Mondal N, Bhat K, Srivastava P, Sen S (2016) Effects of domestication bottleneck and selection on fatty acid desaturases in Indian sesame germplasm. Plant Genetic Resour 14:81–90Google Scholar
  25. Park SH, Ryu SN, Bu Y, Kim H, Simon JE, Kim KS (2010) Antioxidant components as potential neuroprotective agents in sesame (Sesamum indicum L.). Food Rev Int 26(2):103–121Google Scholar
  26. Park JH, Suresh S, Cho GT, Choi NG, Baek HJ, Lee CW, Chung JW (2014) Assessment of molecular genetic diversity and population structure of sesame (Sesamum indicum L.) core collection accessions using simple sequence repeat markers. Plant Genetic Resour 12(01):112–119Google Scholar
  27. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959Google Scholar
  28. Purru S, Sahu S, Rai S, Rao A, Bhat KJP, Plants MBO (2018) GinMicrosatDb: a genome-wide microsatellite markers database for sesame (Sesamum indicum L.). Physiol Mol Biol Plants 24(5):929–937Google Scholar
  29. Sattler SE, Cheng Z, DellaPenna D (2004) From Arabidopsis to agriculture: engineering improved vitamin E content in soybean. Trends Plant Sci 9(8):365–367Google Scholar
  30. Schwartz H, Ollilainen V, Piironen V, Lampi A-M (2008) Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J Food Compos Anal 21(2):152–161Google Scholar
  31. Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238(1):290–299Google Scholar
  32. Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14(5):748–750Google Scholar
  33. Subramaniam SS, Slater SC, Karberg K, Chen R, Valentin HE, Wong YHH (2008) Nucleic acid sequences to proteins involved in tocopherol synthesis. In: Google PatentsGoogle Scholar
  34. Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Zeng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8(3):e58700Google Scholar
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729Google Scholar
  36. Theriault A, Chao J-T, Wang Q, Gapor A, Adeli K (1999) Tocotrienol: a review of its therapeutic potential. Clin Biochem 32(5):309–319Google Scholar
  37. Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJ, Huvenaars KH, van Orsouw NJ (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 7(5):e37565Google Scholar
  38. Van Eenennaam A, Valentin H, Karunanandaa B, Hao M, Aasen E, Levering C (2003a) Methyltransferase genes and uses thereof. International patent application WO 3:016482Google Scholar
  39. Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Aasen ED (2003b) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15(12):3007–3019Google Scholar
  40. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Hua W (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):1Google Scholar
  41. Wang X-Q, Yoon M-Y, He Q, Kim T-S, Tong W, Choi B-W, Park Y-J (2015) Natural variations in OsγTMT contribute to diversity of the α-tocopherol content in rice. Mol Genet Genomics 290(6):2121–2135Google Scholar
  42. Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Zhu X (2015) Genetic discovery for oil production and quality in sesame. Nature Commun 6:8609Google Scholar
  43. Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Cregan PB (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15(1):1Google Scholar
  44. Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9):e1004573Google Scholar
  45. Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Hirano K (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genet 48:927Google Scholar
  46. Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, Yue M (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401Google Scholar

Copyright information

© The Genetics Society of Korea 2019

Authors and Affiliations

  1. 1.Department of Plant Resources, College of Industrial ScienceKongju National UniversityYesanKorea
  2. 2.National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  3. 3.Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
  4. 4.Center of Crop Breeding On Omics and Artificial IntelligenceKongju National UniversityYesanKorea

Personalised recommendations