Advertisement

Genes & Genomics

, Volume 41, Issue 7, pp 767–779 | Cite as

Pathogenic potential of non-typhoidal Salmonella serovars isolated from aquatic environments in Mexico

  • Areli Burgueño-Roman
  • Gloria M. Castañeda-Ruelas
  • Ramón Pacheco-Arjona
  • Maribel Jimenez-EdezaEmail author
Research Article

Abstract

Background

River water has been implicated as a source of non-typhoidal Salmonella (NTS) serovars in Mexico.

Objective

To dissect the molecular pathogenesis and defense strategies of seven NTS strains isolated from river water in Mexico.

Methods

The genome of Salmonella serovars Give, Pomona, Kedougou, Stanley, Oranienburg, Sandiego, and Muenchen were sequenced using the whole-genome shotgun methodology in the Illumina Miseq platform. The genoma annotation and evolutionary analyses were conducted in the RAST and FigTree servers, respectively. The MLST was performed using the SRST2 tool and the comparisons between strains were clustered and visualized using the Gview server. Experimental virulence assay was included to evaluate the pathogenic potential of strains.

Results

We report seven high-quality draft genomes, ranging from ~ 4.61 to ~ 5.12 Mb, with a median G + C value, coding DNA sequence, and protein values of 52.1%, 4697 bp, and 4,589 bp, respectively. The NTS serovars presented with an open pan-genome, offering novel genetic content. Each NTS serovar had an indistinguishable virulotype with a core genome (352 virulence genes) closely associated with Salmonella pathogenicity; 13 genes were characterized as serotype specific, which could explain differences in pathogenicity. All strains maintained highly conserved genetic content regarding the Salmonella pathogenicity islands (1–5) (86.9–100%), fimbriae (84.6%), and hypermutation (100%) genes. Adherence and invasion capacity were confirmed among NTS strains in Caco-2 cells.

Conclusion

Our results demonstrated the arsenal of virulence and defense molecular factors harbored on NTS serovars and highlight that environmental NTS strains are waterborne pathogens worthy of attention.

Keywords

Genome Non-typhoidal serovars Pathogenicity River water Salmonella 

Notes

Acknowledgements

The authors thank the Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA) in Mexico for sharing the NTS strains and permitting their use in this study. We also thank Mr. Cesar Carreón Gaxiola for his technical assistance. This work was supported by the National Council of Science and Technology (CONACyT) grant CB-2014/235989. The authors would like to thank Enago (http://www.enago.com) for the English language review.

Compliance with ethical standards

Conflict of interest

None of the authors have conflicts of interest, financial or otherwise, to declare.

Ethical approval

This article does not contain any studies with human subjects or animals.

References

  1. Achtman M, Wain J, Weill F, Nair S, Zhou Z, Sangal V, Krauland M, Hale J, Harbottle H, Uesbeck A, Dougan G, Harrison L, Brisse S (2012) Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 8:e1002776CrossRefGoogle Scholar
  2. Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M, Meyer F, Olsen G, Olson R, Osterman A, Overbeek R, McNeil L, Paarmann D, Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75CrossRefGoogle Scholar
  3. Bolger A, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  4. Castañeda RGM, Jiménez EM (2018) Evaluación de ríos del valle de Culiacán, México, como reservorios de serotipos de Salmonella resistentes a antibióticos. Rev Int Contam Ambie 34:191–201CrossRefGoogle Scholar
  5. Casteñeda-Ruelas G, Carreón-Gaxiola C, Castelán-Sánchez H, Acatzi-Silva A, Romero-Martínez S, García-Molina A, Jiménez-Edeza M (2017) Draft genome sequences of 18 Salmonella enterica subsp. enterica serovar oranienburg strains isolated from rivers in Northwestern Mexico. Genome Announc 5:e01585–e01516CrossRefGoogle Scholar
  6. CDC (2017) Outbreaks Involving Salmonella|CDC. https://www.cdc.gov/Salmonella/outbreaks.html. Accessed 15 Dec 2017
  7. Chakroun I, Cordero H, Mahdhi A, Morcillo P, Fedhila K, Cuesta A, Bakhrouf A, Mahdouani K, Esteban M (2017) Adhesion, invasion, cytotoxic effect and cytokine production in response to atypical Salmonella typhimurium infection. Microb Pathog 106:40–49CrossRefGoogle Scholar
  8. Darling A, Mau B, Perna N (2010) Progressive mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147CrossRefGoogle Scholar
  9. de Moraes M, Desai P, Porwollik S, Canals R, Perez D, Chu W, McClelland M, Teplitski M (2017) Salmonella persistence in tomatoes requires a distinct set of metabolic functions identified by transposon insertion sequencing. J Appl Environ Microbiol 83:e03028–e03016CrossRefGoogle Scholar
  10. Dhanani A, Block G, Dewar K, Forgetta V, Topp E, Beiko R, Diarra M (2015) Genomic comparison of non-typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky isolates from broiler chickens. PLoS One 10:e0128773CrossRefGoogle Scholar
  11. Dirección General de Epidemilogia (DGE) (2017) Anuario 1984–2016. http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html. Accessed 10 Dec 2017
  12. Dostal A, Gagnon M, Chassard C, Zimmermann M, O’Mahony L, Lacroix C (2014) Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model. PLoS One 9(3):e93549CrossRefGoogle Scholar
  13. Eng S, Pusparajah P, Ab Mutalib N, Ser H, Chan K, Lee L (2015) Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 8:284–293CrossRefGoogle Scholar
  14. Estrada-Acosta M, Medrano-Felix A, Jimenez M, Gomez-Gil B, Leon-Felix J, Amarillas L, Chaidez C (2013) Draft genome sequence of Salmonella enterica subsp. enterica serotype saintpaul strain S-70, isolated from an aquatic environment. Genome Announc 1:e01016–e01013CrossRefGoogle Scholar
  15. Estrada-Acosta M, Jiménez M, Chaidez C, León-Félix J, Castro-del Campo N (2014) Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production. Environ Monit Assess 186:4323–4330CrossRefGoogle Scholar
  16. Estrada-Acosta M, Ramirez K, Medrano-Félix J, Castro-Del Campo N, López-Moreno H, Jimenez Edeza M, Martínez-Urtaza J, Chaidez C (2017) Effect of river water exposition on adhesion and invasion abilities of Salmonella oranienburg and Saintpaul. Int J Environ Health Res 28:43–54CrossRefGoogle Scholar
  17. Fabrega A, Vila J (2013) Salmonella enterica serovar typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26:308–341CrossRefGoogle Scholar
  18. Fricke W, Mammel M, McDermott P, Tartera C, White D, LeClerc J, Ravel J, Cebula T (2011) Comparative genomics of 28 Salmonella enterica Isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193:3556–3568CrossRefGoogle Scholar
  19. Gerlach R, Hensel M (2007) Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica. Berl Munch Tierarztl Wochenschr 120:317–327Google Scholar
  20. Gutiérrez-Cogco L, Montiel-Vázquez E, Aguilera-Pérez P, González-Andrade M (2000) Serotipos de Salmonella identificados en los servicios de salud de México. Salud Públ Méx 42:490–495Google Scholar
  21. Halder B, Malakar A, Chakraborty S (2017) Nucleotide composition determines the role of translational efficiency in human genes. Bioinformation 13:46–53CrossRefGoogle Scholar
  22. Hayward M, Petrovska L, Jansen V, Woodward M (2016) Population structure and associated phenotypes of Salmonella enterica serovars derby and mbandaka overlap with host range. BMC Microbiol 16:15CrossRefGoogle Scholar
  23. Hossain S, De Silva C, Wimalasena S, Heo G, Senarath Pathirana H (2017) Aminoglycoside susceptibility and genetic characterization of Salmonella enterica Subsp. enterica Isolated from Pet Turtles. Korean J Vet Serv 40:27–33Google Scholar
  24. Inouye M, Dashnow H, Raven L, Schultz M, Pope B, Tomita T, Zobel J, Holt K (2014) SRST2: rapid genomic surveillance for public Health and hospital microbiology labs. Genome Med 6:90CrossRefGoogle Scholar
  25. Jacobsen A, Hendriksen R, Aaresturp F, Ussery D, Friis C (2011) The Salmonella enterica Pan-genome. Microb Ecol 62:487–504CrossRefGoogle Scholar
  26. Jiménez M, Martinez-Urtaza J, Rodriguez-Alvarez M, Leon-Felix J, Chaidez C (2014) Prevalence and genetic diversity of Salmonella spp. in a river in a tropical environment in Mexico. J Water Health 12:874CrossRefGoogle Scholar
  27. Karkey A, Jombart T, Walker A, Thompson C, Torres A, Dongol S, Thieu NTV, Thanh DP, Thi NT, Voong V, Singer A, Parkhill J, Thwaites G, Basnyat B, Ferguson N, Baker S (2016) The ecological dynamics of fecal contamination and Salmonella Typhi and Salmonella Paratyphi A in municipal Kathmandu drinking water. PLoS Negl Trop Dis 10(1):e0004346CrossRefGoogle Scholar
  28. Khan C (2014) The dynamic interactions between Salmonella and the microbiota, within the challenging Niche of the gastrointestinal tract. Int Sch Res Notices 2014:1–23Google Scholar
  29. Leekitcharoenphon P, Lukjancenko O, Friis C, Aarestrup F, Ussery D (2012) Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genom 13:88CrossRefGoogle Scholar
  30. Li Y, Weng J, Hsiao C, Chou M, Tseng C, Hung J (2015) PEAT: an intelligent and efficient paired-end sequencing adapter trimming algorithm. BMC Bioinf 16:S2CrossRefGoogle Scholar
  31. Lin G, Chai J, Yuan S, Mai C, Cai L, Murphy R, Zhou W, Luo J (2016) VennPainter: a tool for the comparison and identification of candidate genes based on venn diagrams. PLoS One 11:e0154315CrossRefGoogle Scholar
  32. López-Cuevas O, León J, Jiménez M, Chaidez C (2009) Detección y resistencia a antibióticos de Escherichia coli y Salmonella en agua y suelo agrícola. Rev Fitotec Mex 32:119–126Google Scholar
  33. Majowicz S, Musto J, Scallan E, Angulo F, Kirk M, O’Brien S, Jones T, Fazil A, Hoekstra R (2010) The global burden of non-typhoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889CrossRefGoogle Scholar
  34. Markowitz V, Chen I, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova N, Kyrpides N (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122CrossRefGoogle Scholar
  35. McClelland M, Sanderson K, Spieth J, Clifton S, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson R (2001) Complete genome sequence of Salmonella enterica serovar typhimurium LT2. Nature 413:852–856CrossRefGoogle Scholar
  36. Medrano-Félix A, Estrada-Acosta M, Peraza-Garay F, Castro-del Campo N, Martínez-Urtaza J, Chaidez C (2017) Differences in carbon source utilization of Salmonella oranienburg and saintpaul Isolated from river water. Int J Environ Health Res 27:252–263CrossRefGoogle Scholar
  37. Moest T, Méresse S (2013) Salmonella T3SSs: successful mission of the secret (ion) agents. Curr Opin Microbiol 16(1):38–44CrossRefGoogle Scholar
  38. Mourão J, Novais C, Machado J, Peixe L, Antunes P (2015) Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica Serotype 4,[5],12:i:– clones circulating in Europe. Int J Antimicrob Agents 45:610–616CrossRefGoogle Scholar
  39. Nairz M, Schroll A, Haschka D, Dichtl S, Tymoszuk P, Demetz E, Moser P, Haas H, Fang F, Theurl I, Weiss G (2017) Genetic and dietary iron overload differentially affect the course of Salmonella typhimurium infection. Front Cell Infect Microbiol 7:110CrossRefGoogle Scholar
  40. Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G (2010) Interactive microbial genome visualization with GView. Bioinformatics 26:3125–3126CrossRefGoogle Scholar
  41. Retamal P, Fresno M, Dougnac C, Gutierrez S, Gornall V, Vidal R, Vernal R, Pujol M, Barreto M, Gonzalez-Acuña D, Abalos P (2015) Genetic and phenotypic evidence of the Salmonella enterica Serotype enteritidis human-animal interface in Chile. Front Microbiol 6:464CrossRefGoogle Scholar
  42. Spector M, Kenyon W (2012) Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res Int 45:455–481CrossRefGoogle Scholar
  43. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki E, Zaslavsky L, Lomsadze A, Pruitt K, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624CrossRefGoogle Scholar
  44. Tritt A, Eisen J, Facciotti M, Darling A (2012) An Integrated pipeline for de novo assembly of microbial genomes. PLoS One 7:e42304CrossRefGoogle Scholar
  45. Vázquez-Garcidueñas M, Romero-Pérez N, Figueroa-Aguilar G, Jaime-Sánchez J, Vázquez-Marrufo G (2014) Investigation of a food-borne Salmonella oranienburg outbreak in a Mexican prison. J Infect Dev Ctries 8:143–153CrossRefGoogle Scholar
  46. von Wintersdorff C, Penders J, van Niekerk J, Mills N, Majumder S, van Alphen L, Wolffs P (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173Google Scholar
  47. Wang C, Zhu S, Wang X, Feng Y, Li B, Li Y, Johnston R, Liu G, Zhou J, Liu S (2015) Complete genome sequence of Salmonella enterica subspecies arizonae. str. RKS2983. Stand Genomic Sci 10:30CrossRefGoogle Scholar
  48. Winfield M, Groisman E (2003) Role of Nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69:3687–3694CrossRefGoogle Scholar
  49. Zhang S, Yin Y, Jones M, Zhang Z, Deatherage Kaiser B, Dinsmore B, Fitzgerald C, Fields P, Deng X (2015) Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol 53:1685–1692CrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Químico Biológicas, Laboratorio de Investigación y Diagnóstico Microbiológico, Programa Regional de Posgrado en BiotecnologíaUniversidad Autónoma de SinaloaCuliacánMexico
  2. 2.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMéxico

Personalised recommendations