Advertisement

Genes & Genomics

, Volume 40, Issue 11, pp 1237–1248 | Cite as

Effect of 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene on cellulose synthase A (CesA) genes in flax (Linum usitatissimum L. ‘Nike’) seedlings

  • Hansol Lim
  • Seung-Ho Paek
  • Seung-Eun Oh
Research Article
  • 88 Downloads

Abstract

Introduction

Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages.

Objective

To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development.

Methods

The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. ‘Nike’) seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with 10−4 and 10−3 M 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4–6-day-old flax seedlings.

Results

ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC.

Conclusion

Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.

Keywords

CesA Gene expression Ethylene 1-Aminocyclopropane-1-carboxylic acid Flax Seedlings 

Notes

Acknowledgements

We thank Professor Dr. Grzegorz Spychalski from the Institute of Natural Fibres and Medicinal Plants for providing the seeds of flax.

References

  1. Abbas M, Alabadi D, Blázquez MA (2013) Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci 4:441CrossRefPubMedPubMedCentralGoogle Scholar
  2. Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genom 9:561CrossRefGoogle Scholar
  4. Chantreau M, Chabbert B, Billiard S, Hawkins S, Neutelings G (2015) Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12350 CrossRefPubMedGoogle Scholar
  5. Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh YF, Hou PF, Yang TY, Chang WC (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucl Acids Res 44:D1154–D1160CrossRefPubMedGoogle Scholar
  6. Clark AF, Villemez CL (1972) The formation of ß, 1 → 4 glucan from UDP-α-d-glucose catalyzed by a Phaseolus aureus enzyme. Plant Physiol 50:371–374CrossRefPubMedPubMedCentralGoogle Scholar
  7. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420CrossRefPubMedGoogle Scholar
  8. Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, Ge X, Pruss GJ, Ecker JR, Bowman LH, Vance V (2010) Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog 6:e1000729CrossRefPubMedPubMedCentralGoogle Scholar
  9. Feng Y, Xu P, Li B, Li P, Wen X, An F, Gong Y, Xin Y, Zhu Z, Wang Y, Guo H (2017) Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proc Natl Acad Sci USA 114:13834–13839CrossRefPubMedGoogle Scholar
  10. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186CrossRefPubMedGoogle Scholar
  11. Hamann T, Osborne E, Youngs HL, Misson J, Nussaume L, Somerville C (2004) Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose 11:279–286CrossRefGoogle Scholar
  12. Held MA, Penning B, Brandt AS, Kessans SA, Yong W, Scofield SR (2008) Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci USA 105:20534–20539CrossRefPubMedGoogle Scholar
  13. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefPubMedPubMedCentralGoogle Scholar
  14. Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1323CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y, Zhang D, Liu X, Wu K, Xu Z, Fu X, Zhou Y (2015) A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell 27:1681–1696CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kim WC, Kim JY, Ko JH, Kim J, Han KH (2013) Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthases in Arabidopsis thaliana. J Plant Physiol 170:1374–1378CrossRefPubMedGoogle Scholar
  18. Kumar M, Thammannagowda S, Buline V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254CrossRefPubMedGoogle Scholar
  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \({2^{-\Delta \Delta {\text{C}_\text{T}}}}\) method. Methods 25:402–408CrossRefGoogle Scholar
  20. Mokshina N, Gorshkova T, Deyholos MK (2014) Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS One 9:e97949CrossRefPubMedPubMedCentralGoogle Scholar
  21. Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195CrossRefPubMedGoogle Scholar
  22. Ohme-Takagi M, Suzuki K, Shinshi H (2000) Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol 41:1187–1192CrossRefPubMedGoogle Scholar
  23. Paek SH, Oh SE (2012) Cloning and characterization of cellulose synthase genes involved in primary cell wall synthesis in flax (Linum usitatissimum L.) In: Book of Abstracts for 10th International Congress on Plant Molecular Biology, Jeju, Korea, pp. 268Google Scholar
  24. Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10:e1004664CrossRefPubMedPubMedCentralGoogle Scholar
  25. Petti C, Hirano K, Stork J, DeBolt S (2015) Mapping of cellulose-deficient mutant named dwarf1-1 in Sorghum bicolor to the green revolution gene gibberellin20-oxidase reveals a positive regulatory association between gibberellin and cellulose biosynthesis. Plant Physiol 169:705–716CrossRefPubMedPubMedCentralGoogle Scholar
  26. Raz V, Ecker JR (1999) Regulation of differential growth in the apical hook of Arabidopsis. Development 126:3661–3668PubMedGoogle Scholar
  27. Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143CrossRefPubMedGoogle Scholar
  28. Sanger F, Nicklen S, Coulson R (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefPubMedGoogle Scholar
  29. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  31. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455CrossRefPubMedGoogle Scholar
  32. Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latché A, Pech JC, Bouzayen M (2003) New members of the tomato ERF family show specific epression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett 550:149–154CrossRefPubMedGoogle Scholar
  33. Vandenbussche F, Petrášek J, Žádníková P, Hoyerová K, Pešek B, Raz V, Swarup R, Bennett M, Zažímalová E, Benková E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606CrossRefPubMedGoogle Scholar
  34. Wróbel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54CrossRefPubMedGoogle Scholar
  35. Wróbel-Kwiatkowska M, Turnau K, Góralska K, Anielska T, Szopa J (2012) Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza 22:493–499CrossRefPubMedPubMedCentralGoogle Scholar
  36. Xie L, Yang C, Wang X (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot 62:4495–4506CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesKonkuk UniversitySeoulRepublic of Korea
  2. 2.Sogang UniversitySeoulRepublic of Korea

Personalised recommendations