Advertisement

Computer Model Calibration Based on Image Warping Metrics: An Application for Sea Ice Deformation

  • Yawen GuanEmail author
  • Christian Sampson
  • J. Derek Tucker
  • Won Chang
  • Anirban Mondal
  • Murali Haran
  • Deborah Sulsky
Article
  • 4 Downloads

Abstract

Arctic sea ice plays an important role in the global climate. Sea ice models governed by physical equations have been used to simulate the state of the ice including characteristics such as ice thickness, concentration, and motion. More recent models also attempt to capture features such as fractures or leads in the ice. These simulated features can be partially misaligned or misshapen when compared to observational data, whether due to numerical approximation or incomplete physics. In order to make realistic forecasts and improve understanding of the underlying processes, it is necessary to calibrate the numerical model to field data. Traditional calibration methods based on generalized least-square metrics are flawed for linear features such as sea ice cracks. We develop a statistical emulation and calibration framework that accounts for feature misalignment and misshapenness, which involves optimally aligning model output with observed features using cutting-edge image registration techniques. This work can also have application to other physical models which produce coherent structures. Supplementary materials accompanying this paper appear online.

Keywords

Arctic sea ice Calibration Emulation Gaussian process Image registration 

Notes

Acknowledgements

This material was based upon work partially supported by the National Science Foundation under Grant DMS-1638521 to the Statistical and Applied Mathematical Sciences Institute and by the National Oceanic and Atmospheric Administration under Grant NA15OAR4310165 to the University of New Mexico. MH was also partially supported by NSF-DMS1418090 and through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation, U.S. Department of Energy, or the United States Government.

References

  1. F.I. Badgley. Heat balance at the surface of the Arctic Ocean. In Proceedings of 29th Annual Western Snow Conference Spokane, pages 101–104, 1961.Google Scholar
  2. M. J. Bayarri, J. O. Berger, J. Cafeo, G. Garcia-Donato, F. Liu, J. Palomo, R. J. Parthasarathy, R. Paulo, J. Sacks, and D. Walsh. Computer model validation with functional output. The Annals of Statistics, 35 (5): 1874–1906, 2007.  https://doi.org/10.1214/009053607000000163.MathSciNetCrossRefzbMATHGoogle Scholar
  3. M. Beg, M. Miller, A. Trouve, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61: 139–157, 2005.CrossRefGoogle Scholar
  4. S. Conti, J. P. Gosling, J. E. Oakley, and A. O’Hagan. Gaussian process emulation of dynamic computer codes. Biometrika, 96 (3): 663–676, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  5. M. Coon, R. Kwok, G. Levy, M. Pruis, H. Schreyer, and D. Sulsky. Arctic ice dynamics experiment AIDJEX assumptions revisited and found inadequate. Journal of Geophysical Research, 112: C11S90, 2007.  https://doi.org/10.1029/2005JC003393.CrossRefGoogle Scholar
  6. M. D. Coon, G. S. Knoke, and D. C. Echert. The architecture of an anisotropic elastic–plastic sea ice mechanics constitutive law. Journal of Geophysical Research, 103: 21915–21925, 1998.CrossRefGoogle Scholar
  7. A. A. Goshtasby. Image Registration: Principles, Tools, and Methods. Springer London, 2012.CrossRefzbMATHGoogle Scholar
  8. O. Harari, D. Bingham, A. Dean, and D. Higdon. Computer experiments: Prediction accuracy, sample size and model complexity revisited. Statistica Sinica, 28 (2): 899–910, 04 2018.MathSciNetzbMATHGoogle Scholar
  9. D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne. Combining field data and computer simulations for calibration and prediction. SIAM Journal on Scientific Computing, 26: 448–466, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  10. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M Irendell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph. The NCEP/NCAR 40-year reanalysis project. The Bulletin of the American Meteorological Society, 77: 437–470, 1996.CrossRefGoogle Scholar
  11. M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63 (3): 425–464, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  12. W. Kleiber, S. R. Sain, and M. J. Wiltberger. Model calibration via deformation. Journal of Uncertainty Quantification, 2: 545–563, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  13. R. Kwok. Deformation of the Arctic ocean sea ice cover between November 1996 and April 1997: A qualitative survey. In J. P. Dempsey and H.H. Shen, editors, UTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, pages 315–322, Dordrecht, 2001. Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. F. Liu, M. J. Bayarri, and J. O. Berger. Modularization in Bayesian analysis, with emphasis on analysis of computer models. Bayesian Analysis, 4 (1): 119–150, 2009.  https://doi.org/10.1214/09-BA404.MathSciNetCrossRefzbMATHGoogle Scholar
  15. J. L. Loeppky, J. Sacks, and W. J. Welch. Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51 (4): 366–376, 2009.  https://doi.org/10.1198/TECH.2009.08040.MathSciNetCrossRefGoogle Scholar
  16. J. S. Marron, J.O. Ramsay, L.M. Sangalli, and A. Srivastava. Functional data analysis of amplitude and phase variation. Statistical Science, 30 (4): 468–484, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  17. J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey. A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102 (C3): 5753–5766, 1997.CrossRefGoogle Scholar
  18. C. F. Mass, D. Ovens, K. Westrick, and B. A. Colle. Does increasing horizontal resolution produce more skillful forecasts? The American Meteorological Society, 83: 407–430, 2002.CrossRefGoogle Scholar
  19. M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21 (2): 239–245, 1979.MathSciNetzbMATHGoogle Scholar
  20. J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89 (4): 769–784, 2002.CrossRefGoogle Scholar
  21. K. Peterson and D. Sulsky. Evaluating Sea Ice Deformation in the Beaufort Sea Using a Kinematic Crack Algorithm with RGPS Data. Springer, Berlin, 2011.CrossRefGoogle Scholar
  22. M. Plummer, N. Best, K. Cowles, and K. Vines. Coda: Convergence diagnosis and output analysis for MCMC. R News, 6 (1): 7–11, 2006.Google Scholar
  23. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/.
  24. H. Schreyer, L. Monday, D. Sulsky, M. Coon, and R. Kwok. Elastic–decohesive constitutive model for sea ice. Journal of Geophysical Research, 111: C11S26, 2006.  https://doi.org/10.1029/2005JC003334.CrossRefGoogle Scholar
  25. E. M. Schulson. Compressive shear faults within arctic sea ice: Fracture on scales large and small. Journal of Geophysical Research, 109: C07016, 2004.  https://doi.org/10.1029/2003JC002108.CrossRefGoogle Scholar
  26. A. Srivastava and E. Klassen. Functional and Shape Data Analysis. Springer, New York, 2016.CrossRefzbMATHGoogle Scholar
  27. D. Sulsky and K. Peterson. Towards a new, elastic–decohesive model of Arctic sea ice. Physica D, 240: 1674–1683, 2011.  https://doi.org/10.1016/j.physletb.2003.10.071.CrossRefGoogle Scholar
  28. H. Tagare, D. Groisser, and O. Skrinjar. Symmetric non-rigid registration: A geometric theory and some numerical techniques. Journal of Mathematical Imaging and Vision, 34 (1): 61–88, 2009.MathSciNetCrossRefGoogle Scholar
  29. G. W. Timco and W. F. Weeks. A review of engineering properties of sea ice. Cold Regions Science and Technology, 60: 107–129, 2010.CrossRefGoogle Scholar
  30. J. D. Tucker, W. Wu, and A. Srivastava. Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis, 61: 50–66, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  31. T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic deomons: Efficient non-parametric image registration. NeuroImage, 45 (1): S61–S72, 2009.CrossRefGoogle Scholar
  32. W.F. Weeks. On Sea Ice. University of Alaska Press, Fairbanks, 2010.Google Scholar
  33. Q. Xie and A. Srivastava. Image registration using phase–amplitude separation. In Variational Methods, pages 83–106, 2016.Google Scholar

Copyright information

© International Biometric Society 2019

Authors and Affiliations

  1. 1.North Carolina State UniversityRaleighUSA
  2. 2.The Statistical and Applied Mathematical Sciences InstituteDurhamUSA
  3. 3.The University of North Carolina at Chapel HillChapel HillUSA
  4. 4.Sandia National LaboratoriesAlbuquerqueUSA
  5. 5.University of CincinnatiCincinnatiUSA
  6. 6.Case Western Reserve UniversityClevelandUSA
  7. 7.Pennsylvania State UniversityUniversity ParkUSA
  8. 8.University of New MexicoAlbuquerqueUSA

Personalised recommendations