Advertisement

Change-Point Estimation in the Multivariate Model Taking into Account the Dependence: Application to the Vegetative Development of Oilseed Rape

  • V. Brault
  • C. Lévy-Leduc
  • A. Mathieu
  • A. Jullien
Article
  • 34 Downloads

Abstract

In this paper, we address the change-point estimation issue in multivariate observations which consist in functions having piecewise constant first derivatives corrupted by some additional noise. We propose to solve this problem by rewriting it as a variable selection issue in a sparse multivariate linear model. Moreover, the methodology that we propose takes into account the dependence that may exist within the multivariate observations. Then, the performance of our approach is assessed through some numerical experiments and compared to other alternative and classical methods. Finally, we apply our methodology to experimental data in order to study the vegetative development of oilseed rape. The evolution of the number of leaves of oilseed rape can be modeled as a function having piecewise constant first derivatives corrupted by some additional noise where the change-points correspond to key times in the plant phenology. Our novel estimation method increases the accuracy of the change-point estimation in comparison with classical approaches. Moreover, we show that the parameters of the covariance matrix depend on the level of competition between plants. Supplementary materials accompanying this paper appear online.

Keywords

Multivariate models Change-point estimation Variable selection Dependence Application to oilseed rape Phyllochron 

Supplementary material

13253_2018_324_MOESM1_ESM.pdf (487 kb)
Supplementary material 1 (pdf 486 KB)

References

  1. Auger, I. E., & Lawrence, C. E. (1989), “Algorithms for the optimal identification of segment neighborhoods,” Bulletin of Mathematical Biology, 51(1), 39–54.MathSciNetCrossRefMATHGoogle Scholar
  2. Baey, C., & Cournède, P. (2011), Using a hierarchical segmented model to assess the dynamics of leaf appearance in plant populations,, in 14th Applied Stochastic Models and Data Analysis International Conference (ASMDA 2011).Google Scholar
  3. Bai, J. (2010), “Common breaks in means and variances for panel data,” Journal of Econometrics, 157(1), 78 – 92. Nonlinear and Nonparametric Methods in Econometrics.Google Scholar
  4. Baker, J., Allen, L., Boote, K., Jones, P., & Jones, J. (1990), “Developmental responses of rice to photoperiod and carbon dioxide concentration,” Agricultural and Forest Meteorology, 50, 201–210.CrossRefGoogle Scholar
  5. Baldissera, T., Frak, E., de Faccio Carvalho P.C., & Louarn, G. (2014), “Plant development controls leaf area expansion in alfalfa plants competing for light,” Annals of Botany, 113(1), 145–157.CrossRefGoogle Scholar
  6. Bellman, R. (1961), “On the Approximation of Curves by Line Segments Using Dynamic Programming,” Commun. ACM, 4(6), 284–286.CrossRefMATHGoogle Scholar
  7. Bonhomme, R. (2000), “Bases and limited to using ‘degree.day’ units,” European Journal of Agronomy, 13(1),  1–10.MathSciNetCrossRefGoogle Scholar
  8. Carlstein, E., Muller, H. G., & Siegmund, D. (1994), Change-point problems, Hayward: Institute of Mathematical Statistics Lecture Notes.MATHGoogle Scholar
  9. Cho, H., & Fryzlewicz, P. (2015), “Multiple-change-point detection for high dimensional time series via sparsified binary segmentation,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(2), 475–507.MathSciNetCrossRefGoogle Scholar
  10. de Raissac, M., Audebert, A., Roques, S., & Bolomier, J. (2004), Competition between plants affects phenology in rice cultivars,, in New directions for a diverse planet : Proceedings for the 4th International Crop Science Congress, eds. N. Turner, J. Angus, L. Mc Intyre, M. Robertson, A. Borrell, & D. Lloyd, Gosford : Regional Institute.Google Scholar
  11. Diepenbrock, W. (2000), “Yield analysis of winter oilseed rape (Brassica napus L.) : a review,” Field Crops Research, 67, 35–49.CrossRefGoogle Scholar
  12. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004), “Least angle regression,” The Annals of statistics, 32(2), 407–499.MathSciNetCrossRefMATHGoogle Scholar
  13. Evers, J., Vos, J., Fournier, C., Andrieu, B., Chelle, M., & Struik, P. (2005), “Towards a generic architectural model of tillering in Graminae, as exemplified by spring wheat (Triticum aestivum),” New Phytologist, 166(3), 801–812.CrossRefGoogle Scholar
  14. Fryzlewicz, P. (2014), “Wild binary segmentation for multiple change-point detection,” Ann. Statist., 42(6), 2243–2281.MathSciNetCrossRefMATHGoogle Scholar
  15. Gabrielle, B., Denoroy, P., Gosse, G., Justes, E., & Andersen, M. (1998), “A model of leaf area development and senescence for winter oilseed rape,” Field Crops Research, 57, 209–222.CrossRefGoogle Scholar
  16. Gomez, N., & Miralles, D. (1990), “Factors that modify early and late reproductive phases in oilseed rape (Brassica napus L .): Its impact on seed yield and oil content.,” Industrial Crops and Products, 34, 1277–1285.CrossRefGoogle Scholar
  17. Harchaoui, Z., & Lévy-Leduc, C. (2010), “Multiple Change-Point Estimation With a Total Variation Penalty,” Journal of the American Statistical Association, 105(492), 1480–1493.MathSciNetCrossRefMATHGoogle Scholar
  18. Horvath, L., & Huskova, M. (2012), “Change-point detection in panel data,” Journal of Time Series Analysis, 33(4), 631–648.MathSciNetCrossRefMATHGoogle Scholar
  19. Jia, J., & Rohe, K. (2015), “Preconditioning the Lasso for sign consistency,” Electron. J. Statist., 9(1), 1150–1172.MathSciNetCrossRefMATHGoogle Scholar
  20. Jullien, A., Mathieu, A., Allirand, J., Pinet, A., de Reffye, P., Cournede, P., & Ney, B. (2011), “Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model,” Annals of Botany, 107(5), 765–779.CrossRefGoogle Scholar
  21. Kay, S. (1993), Fundamentals of statistical signal processing: detection theory, : Prentice-Hall, Inc.Google Scholar
  22. Killick, R., Fearnhead, P., & Eckley, I. A. (2012), “Optimal Detection of Changepoints With a Linear Computational Cost,” Journal of the American Statistical Association, 107(500), 1590–1598.MathSciNetCrossRefMATHGoogle Scholar
  23. Lemaire, S., Maupas, F., Cournede, P., & de Reffye, P. (2008), “A morphogenetic crop model for sugar-beet (Beta vulgaris L.),” International Symposium on Crop Modeling and Decision Support: ISCMDS, 5, 19–22.Google Scholar
  24. Maidstone, R., Hocking, T., Rigaill, G., & Fearnhead, P. (2016), “On optimal multiple changepoint algorithms for large data,” Statistics and Computing, pp. 1–15.Google Scholar
  25. Miralles, D., Ferro, B., & Slafer, G. (2001), “Developmental responses to sowing date in wheat, barley and rapeseed,” Field Crop Research, 71, 211–223.CrossRefGoogle Scholar
  26. Morrison, M., & Mcvetty, P. (1991), “Leaf appearance rate of summer rape,” Can. J. Plant Sci., 71, 405–412.CrossRefGoogle Scholar
  27. Morrison, M., Mcvetty, P., & R., S. (1990), “Effect of altering plant density on growth characteristics of summer rape,” Can. J. Plant Sci., 70, 139–149.Google Scholar
  28. Nanda, R., Bhargava, S., & Rawson, H. M. (1995), “Effect of sowing date on rates of leaf appearance , final leaf numbers and areas in Brassica campestris , B . juncea , B . napus and B . carinata,” Field Crops Research, 42, 125–134.CrossRefGoogle Scholar
  29. Ng, C. T., Lee, W., & Lee, Y. (2018), “Change-point estimators with true identification property,” Bernoulli, 24(1), 616–660.MathSciNetCrossRefMATHGoogle Scholar
  30. Rickman, R., & Klepper, B. (1995), “The Phyllochron: where do we go in the future?,” Crop Science, 35, 44–49.CrossRefGoogle Scholar
  31. Rigaill, G. (2015), “A pruned dynamic programming algorithm to recover the best segmentations with 1 to Kmax change-points,” Journal de la Société Française de Statistique, 156(4), 180–205.MathSciNetMATHGoogle Scholar
  32. Scott, A. J., & Knott, M. (1974), “A cluster analysis method for grouping means in the analysis of variance,” Biometrics, 30(3), 507–512.CrossRefMATHGoogle Scholar
  33. Tibshirani, R. (1996), “Regression shrinkage and selection via the Lasso,” J. Royal. Statist. Soc B., 58(1), 267–288.MathSciNetMATHGoogle Scholar
  34. Tibshirani, R. J. (2014), “Adaptive piecewise polynomial estimation via trend filtering,” Ann. Statist., 42(1), 285–323.MathSciNetCrossRefMATHGoogle Scholar
  35. Tittonel, E. (1990) , Evénements liés à l’évolution florale chez le colza Brassica napus L. var Oleifera Metzg, PhD thesis, Université Paris Sud, Centre d’Orsay, Paris.Google Scholar
  36. Tivet, F. (2000), Etude des facteurs génotypiques et environnementaux déterminant la mise en place de la surface foliaire chez le riz. Incidence particuliere d’un deficit hydrique, PhD thesis, INA P-G.Google Scholar
  37. Zhu, J., Vos, J., van der Wer, W., van der Putten, P., & Evers, J. (2014), “Early competition shapes maize whole-plant development in mixed stands,” Journal of Experimental Botany, 65(2), 641–653.CrossRefGoogle Scholar

Copyright information

© International Biometric Society 2018

Authors and Affiliations

  1. 1.Univ. Grenoble AlpesCNRS, LJKGrenobleFrance
  2. 2.UMR MIA-Paris, INRA, AgroParisTechUniversité Paris-SaclayParisFrance
  3. 3.UMR ECOSYS, INRA, AgroParisTechUniversité Paris-SaclayThiverval-GrignonFrance

Personalised recommendations