Advertisement

Verification of lithium formate monohydrate in 3D-printed container for electron paramagnetic resonance dosimetry in radiotherapy

  • Jin-sol Shin
  • Hoon Choi
  • Hun Joo Shin
  • Shin Wook Kim
  • Hyeong Wook Park
  • Jina Kim
  • Aeran Kim
  • Jinho Hwang
  • Yunji Seol
  • Taegeon Oh
  • Hong Seok Jang
  • Byung Ock Choi
  • Young-nam KangEmail author
Scientific Note
  • 12 Downloads

Abstract

The nondestructive dosimetry achieved with electron paramagnetic resonance (EPR) dosimetry facilitates repetitive recording by the same dosimeter to increase the reliability of data. In precedent studies, solid paraffin was needed as a binder material to make the lithium formate monohydrate (LFM) EPR dosimeter stable and nonfragile; however, its use complicates dosimetry. This study proposes a newly designed pure LFM EPR dosimeter created by inserting LFM into a 3D-printed container. Dosimetric characteristics of the LFM EPR dosimeter and container, such as reproducibility, linearity, energy dependence, and angular dependence, were evaluated and verified through a radiation therapy planning system (RTPS). The LFM EPR dosimeters were irradiated using a clinical linear accelerator. The EPR spectra of the dosimeters were acquired using a Bruker EMX EPR spectrometer. Through this study, it was confirmed that there is no tendency in the EPR response of the container based on irradiation dose or radiation energy. The results show that the LFM EPR dosimeters have a highly sensitive dose response with good linearity. The energy dependence across each photon and electron energy range seems to be negligible. Based on these results, LFM powder in a 3D-printed container is a suitable option for dosimetry of radiotherapy. Furthermore, the LFM EPR dosimeter has considerable potential for in vivo dosimetry and small-field dosimetry via additional experiments, owing to its small effective volume and highly sensitive dose response compared with a conventional dosimeter.

Keywords

Electron paramagnetic resonance Dosimetry Lithium formate Radiotherapy 3D printer 

Notes

Acknowledgements

This research was supported by Advanced Institute For Radiation Fusion Medical Technology (AIRFMT) at Catholic University of Korea.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Kim J-N, Lee Y-K, Shin H-J, Ji S-H, Park S-K, Kim J-Y, Kang Y-N (2016) Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy. Med Dosim 41(2):113–117CrossRefGoogle Scholar
  2. 2.
    Shin H-J, Kim M-H, Choi I-B, Kang Y-N, Kim D-H, Choi B-O, Jang H-S, Jung J-Y, Son S-H, Kay C-S (2013) Evaluation of the EDGE detector in small-field dosimetry. J Korean Phys Soc 63(1):128–134CrossRefGoogle Scholar
  3. 3.
    Shin H-J, Kim S-W, Kay C-S, Seo J-H, Lee G-W, Kang K-M, Kang Y-N (2015) Evaluation of the Elekta Symmetry™ 4D IGRT system by using a moving lung phantom. J Korean Phys Soc 67(1):260–263CrossRefGoogle Scholar
  4. 4.
    Shin H-J, Song J-H, Jung J-Y, Kwak Y-K, Kay C-S, Kang Y-N, Son S-H (2013) Advantage of 3D volumetric dosemeter in delivery quality assurance of dynamic arc therapy: comparison of pencil beam and Monte Carlo calculations. Br J Radiol 86(1032):20130353CrossRefGoogle Scholar
  5. 5.
    Essers M, Mijnheer B (1999) In vivo dosimetry during external photon beam radiotherapy. Int J Radiat Oncol Biol Phys 43(2):245–259CrossRefGoogle Scholar
  6. 6.
    Kron T (1994) Thermoluminescence dosimetry and its applications in medicine–Part 1: Physics, materials and equipment. Australas Phys Eng Sci Med 17(4):175–199Google Scholar
  7. 7.
    Rah J-E, Hong J-Y, Kim G-Y, Kim Y-L, Shin D-O, Suh T-S (2009) A comparison of the dosimetric characteristics of a glass rod dosimeter and a thermoluminescent dosimeter for mailed dosimeter. Radiat Meas 44(1):18–22CrossRefGoogle Scholar
  8. 8.
    Bougai A, Brik A, Chumak V, Desrosiers M, Dubovski S, Fattibene P, Onori S (2002) Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Vienna International Centre, AustriaGoogle Scholar
  9. 9.
    Schaeken B, Scalliet P (1996) One year of experience with alanine dosimetry in radiotherapy. Appl Radiat Isot 47(11–12):1177–1182CrossRefGoogle Scholar
  10. 10.
    Ciesielski B, Schultka K, Kobierska A, Nowak R, Peimel-Stuglik Z (2003) In vivo alanine/EPR dosimetry in daily clinical practice: a feasibility study. Int J Radiat Oncol Biol Phys 56(3):899–905CrossRefGoogle Scholar
  11. 11.
    Nagy V, Sholom S-V, Chumak V-V, Desrosiers M-F (2002) Uncertainties in alanine dosimetry in the therapeutic dose range. Appl Radiat Isot 56(6):917–929CrossRefGoogle Scholar
  12. 12.
    Hayes R-B, Haskell E-H, Wieser A, Romanyukha A-A, Hardy BL, Barrus J-K (2000) Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy. Nucl Instrum Methods Phys Res A 440(2):453–461CrossRefGoogle Scholar
  13. 13.
    Vestad T-A, Malinen E, Lund A, Hole E-O, Sagstuen E (2003) EPR dosimetric properties of formates. Appl Radiat Isot 59(2–3):181–188CrossRefGoogle Scholar
  14. 14.
    Lund E, Gustafsson H, Danilczuk M, Sastry M, Lund A, Vestad T, Malinen E, Hole E, Sagstuen E (2005) Formates and dithionates: sensitive EPR-dosimeter materials for radiation therapy. Appl Radiat Isot 62(2):317–324CrossRefGoogle Scholar
  15. 15.
    Vestad T-A, Malinen E, Olsen D-R, Hole E-O, Sagstuen E (2004) Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods. Phys Med Biol 49(20):4701CrossRefGoogle Scholar
  16. 16.
    Thomas J-O, Tellgren R, Almlöf J (1975) Hydrogen bond studies. XCVI. X-N maps and ab initio MO–LCAO–SCF calculations of the difference electron density in noncentrosymmetric lithium formate monohydrate, LiHCOO H2O. Acta Crystallogr A 31(7):1946–1955CrossRefGoogle Scholar
  17. 17.
    Antonovic L, Gustafsson H, Carlsson GA, Tedgren ÅC (2009) Evaluation of a lithium formate EPR dosimetry system for dose measurements around brachytherapy sources. Med Phys 36(6Part1):2236–2247CrossRefGoogle Scholar
  18. 18.
    Vestad T-A, Gustafsson H, Lund A, Hole E-O, Sagstuen E (2004) Radiation-induced radicals in lithium formate monohydrate (LiHCO 2· H 2 O). EPR and ENDOR studies of X-irradiated crystal and polycrystalline samples. Phys Chem Chem Phys 6(11):3017–3022CrossRefGoogle Scholar
  19. 19.
    Adolfsson E, Carlsson G-A, Grindborg J-E, Gustafsson H, Lund E, Tedgren Å-C (2010) Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy. Med Phys 37(9):4946–4959CrossRefGoogle Scholar
  20. 20.
    Yordanov N-D, Fabisiak S, Lagunov O (2006) Effect of the shape and size of dosimeters on the response of solid state/EPR dosimetry. Radiat Meas 41(3):257–263CrossRefGoogle Scholar
  21. 21.
    Adolfsson E (2014) Lithium formate EPR dosimetry for accurate measurements of absorbed dose in radiotherapy. Doctoral Thesis, Linköping University.Google Scholar
  22. 22.
    Hayes R-B (2000) Concerns regarding recent NIST publications on alanine dosimetry. Radiat Phys Chem 59:443–444CrossRefGoogle Scholar
  23. 23.
    Al-Karmi A-M, Ayaz A-A-H, Al-Enezi M-S, Abdel-Rahman W, Dwaikat N (2015) Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: a feasibility study. Australas Phys Eng Sci Med 38(3):425–434CrossRefGoogle Scholar
  24. 24.
    Goldstone KE (1990) Tissue substitutes in radiation dosimetry and measurement. In: ICRU Report 44, International Commission on Radiation Units and Measurements, USAGoogle Scholar
  25. 25.
    Malinen E, Waldeland E, Hole E-O, Sagstuen E (2007) The energy dependence of lithium formate EPR dosimeters for clinical electron beams. Phys Med Biol 52(14):4361CrossRefGoogle Scholar
  26. 26.
    Gustafsson H, Lund E, Olsson S (2008) Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy. Phys Med Biol 53(17):4667CrossRefGoogle Scholar
  27. 27.
    Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26(8):1466–1475CrossRefGoogle Scholar
  28. 28.
    Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23(4):445–457CrossRefGoogle Scholar
  29. 29.
    Petoukhova A-L, Van Wingerden K, Wiggenraad R-G-J, Van de Vaart P-J-M, Van Egmond J, Franken E-M, Van Santvoort J-P-C (2010) Verification measurements and clinical evaluation of the iPlan RT Monte Carlo dose algorithm for 6 MV photon energy. Phys Med Biol 55(16):4601CrossRefGoogle Scholar
  30. 30.
    Fragoso M, Wen N, Kumar S, Liu D, Ryu S, Movsas B, Chetty I-J (2010) Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning. Phys Med Biol 55(16):4445CrossRefGoogle Scholar
  31. 31.
    Geso M, Ackerly T, Lim S-A, Best S-P, Gagliardi F, Smith C-L (2018) Application of the ‘spiking’ method to the measurement of low dose radiation (≤ 1 Gy) using alanine dosimeters. Appl Radiat Isot 133:111–116CrossRefGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2019

Authors and Affiliations

  • Jin-sol Shin
    • 1
    • 2
    • 3
  • Hoon Choi
    • 4
  • Hun Joo Shin
    • 1
    • 2
    • 3
  • Shin Wook Kim
    • 1
    • 2
    • 3
  • Hyeong Wook Park
    • 2
    • 5
    • 6
  • Jina Kim
    • 1
    • 2
  • Aeran Kim
    • 1
    • 2
  • Jinho Hwang
    • 1
    • 2
  • Yunji Seol
    • 1
    • 2
  • Taegeon Oh
    • 1
    • 2
  • Hong Seok Jang
    • 2
    • 7
  • Byung Ock Choi
    • 2
    • 7
  • Young-nam Kang
    • 2
    • 7
    Email author
  1. 1.Department of Biomedicine & Health SciencesThe Catholic University of KoreaSeoulKorea
  2. 2.Advanced Institute for Radiation Fusion Medical Technology, College of MedicineThe Catholic University of KoreaSeoulKorea
  3. 3.Department of Radiation Oncology, Incheon St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaIncheonKorea
  4. 4.Department of Radiation Emergency Medical TeamRadiation Health InstituteSeongnam-siKorea
  5. 5.Department of Medical PhysicsKyonggi University of KoreaSuwon-siKorea
  6. 6.Department of Radiation Oncology, Yeouido St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  7. 7.Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea

Personalised recommendations