Advertisement

The Implementation of an Adjustable Afterload Module for Ex Situ Heart Perfusion

  • Bryan Gellner
  • Liming Xin
  • Roberto Vanin Pinto Ribeiro
  • Ved Bissoondath
  • Pengzhou Lu
  • Mitchell B. Adamson
  • Frank Yu
  • Emanuela Paradiso
  • Jean Zu
  • Craig A. SimmonsEmail author
  • Mitesh V. Badiwala
Original Article
  • 24 Downloads

Abstract

Purpose

Windkessel impedance analysis has proven to be an effective technique for instituting artificial afterload on ex situ hearts. Traditional fixed parameter afterload modules, however, are unable to handle the changing contractile conditions associated with prolonged ex situ heart perfusion. In this paper, an adjustable afterload module is described comprising of three fully adjustable sub-components: a systemic resistor, a proximal resistor and a compliance chamber.

Methods

Using a centrifugal pump, the systemic resistor and compliance chamber were subjected to testing across their operating ranges, whereby the predictability of resistance and compliance values was evaluated. The components were then assembled, and the full module tested on three separate porcine hearts perfused for 6 h with success defined by the ability to maintain physiological systolic and diastolic aortic pressures across flow rate variability.

Results

For both the systemic resistor and compliance chamber, experimental measurements agreed with their theoretical equivalents, with coefficients of determination of 0.99 and 0.97 for the systemic resistor and compliance chamber, respectively. During ex situ perfusion, overall 95% confidence intervals demonstrate that physiological systolic (95–96.21 mmHg) and diastolic (26.8–28.8 mmHg) pressures were successfully maintained, despite large variability in aortic flow. Left ventricular contractile parameters, were found to be in line with those in previous studies, suggesting the afterload module has no detrimental impact on functional preservation.

Conclusions

We conclude that due to the demonstrable control of our afterload module, we can maintain physiological aortic pressures in a passive afterload working mode across prolonged perfusion periods, enabling effective perfusion regardless of contractile performance.

Keywords

Heart preservation Ex Vivo heart perfusion Ex situ heart perfusion Afterload Heart transplantation Perfusion 

Notes

Acknowledgments

This project was supported by the University of Toronto EMHSeed program, the Translational Biology and Engineering Program in the Ted Rogers Centre for Heart Research, and Toronto General and Western Hospital Foundation.

Supplementary material

13239_2019_447_MOESM1_ESM.pdf (248 kb)
Electronic supplementary material 1 (PDF 248 kb)

References

  1. 1.
    Abicht, J. M., T. A. J. Mayr, J. Jauch, S. Guethoff, S. Buchholz, B. Reichart, et al. Large-animal biventricular working heart perfusion system with low priming volume-comparison between in vivo and ex vivo cardiac function. Thoracic Cardiovasc. Surg. 66(1):71–82, 2018.  https://doi.org/10.1055/s-0036-1580604.CrossRefGoogle Scholar
  2. 2.
    Ardehali, A., F. Esmailian, M. Deng, E. Soltesz, E. Hsich, Y. Naka, et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet. 385(9987):2577–2584, 2015.  https://doi.org/10.1016/S0140-6736(15)60261-6.CrossRefGoogle Scholar
  3. 3.
    Arnett, D. K., S. P. Glasser, G. McVeigh, R. Prineas, S. Finklestein, R. Donahue, et al. Blood pressure and arterial compliance in young adults: the Minnesota Children’s Blood Pressure Study. Am. J. Hypertens. 14(3):200–205, 2001.CrossRefGoogle Scholar
  4. 4.
    Bolton, M. I. Advances in swine in biomedical research. In: Experimental Physiology, Vol. 1, edited by M. E. Tumbleson, and L. B. Schook. New York: Plenum Publishing Corporation, 1997.Google Scholar
  5. 5.
    Cattermole, G. N., P. Y. Leung, G. Y. Ho, P. W. Lau, C. P. Chan, S. S. Chan, et al. The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor. Physiol. Rep. 5(6):e13195, 2017.  https://doi.org/10.14814/phy2.13195.CrossRefGoogle Scholar
  6. 6.
    Church, J. T., F. Alghanem, K. B. Deatrick, J. M. Trahanas, J. P. Phillips, M. Hee Song, et al. Normothermic ex vivo heart perfusion: effects of live animal blood and plasma cross circulation. ASAIO J. 63(6):766–773, 2017.  https://doi.org/10.1097/MAT.0000000000000583.CrossRefGoogle Scholar
  7. 7.
    Colah, S., D. H. Freed, P. Mundt, S. Germscheid, P. White, A. Ali, et al. Ex vivo perfusion of the swine heart as a method for pre-transplant assessment. Perfusion. 27(5):408–413, 2012.  https://doi.org/10.1177/0267659112449035.CrossRefGoogle Scholar
  8. 8.
    Collins, M. J., S. L. Moainie, B. P. Griffith, and R. S. Poston. Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool. Eur. J. Cardio-thoracic Surg. 34(2):318–325, 2008.  https://doi.org/10.1016/j.ejcts.2008.03.043.CrossRefGoogle Scholar
  9. 9.
    de Hart, J., A. de Weger, S. van Tuijl, J. M. Stijnen, C. N. van den Broek, M. C. Rutten, et al. An ex vivo platform to simulate cardiac physiology: a new dimension for therapy development and assessment. Int. J. Artif. Org. 34(6):495–505, 2011.  https://doi.org/10.5301/IJAO.2011.8456.CrossRefGoogle Scholar
  10. 10.
    Dowell, R. T., and A. A. Houdi. Aortic peak flow velocity as an index of myocardial contractility in the conscious rat. Methods Findings Exp. Clin. Pharmacol. 19(8):533–539, 1997.Google Scholar
  11. 11.
    Dumont, K., J. Yperman, E. Verbeken, P. Segers, B. Meuris, S. Vandenberghe, et al. Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif. Org. 26(8):710–714, 2002.CrossRefGoogle Scholar
  12. 12.
    Frank, O. Die Grundform des arteriellen pulses. Erste Abhandlung. Mathematische Analyze. Z Biol 37:483–526, 1899.Google Scholar
  13. 13.
    Graf, F., T. Finocchiaro, M. Laumen, I. Mager, and U. Steinseifer. Mock circulation loop to investigate hemolysis in a pulsatile total artificial heart. Artif. Org. 39(5):416–422, 2015.  https://doi.org/10.1111/aor.12399.CrossRefGoogle Scholar
  14. 14.
    Hebert, J. L., Y. Lecarpentier, K. Zamani, C. Coirault, G. Daccache, and D. Chemla. Relation between aortic dicrotic notch pressure and mean aortic pressure in adults. Am. J. Cardiol. 76(4):301–306, 1995.  https://doi.org/10.1016/s0002-9149(99)80086-1.CrossRefGoogle Scholar
  15. 15.
    Hildebrand, D. K., Z. J. Wu, J. E. Mayer, Jr, and M. S. Sacks. Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann. Biomed. Eng. 32(8):1039–1049, 2004.CrossRefGoogle Scholar
  16. 16.
    Jones, S. A. A relationship between reynolds stresses and viscous dissipation: implications to red cell damage. Ann. Biomed. Eng. 23(1):21–28, 1995.  https://doi.org/10.1007/BF02368297.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kaasi, A., I. A. Cestari, N. A. Stolf, A. A. Leirner, O. Hassager, and I. N. Cestari. A new approach to heart valve tissue engineering: mimicking the heart ventricle with a ventricular assist device in a novel bioreactor. J. Tissue Eng. Regener. Med. 5(4):292–300, 2011.  https://doi.org/10.1002/term.315.CrossRefGoogle Scholar
  18. 18.
    Koenig, S. C., G. A. Giridharan, D. L. Ewart, M. J. Schroeder, C. Ionan, M. S. Slaughter, et al. Human, bovine and porcine systematic vascular input impedances are not equivalent: implications for device testing and xenotransplantation in heart failure. J. Heart Lung Transplant. 27(12):1340–1347, 2008.  https://doi.org/10.1016/j.healun.2008.08.009.CrossRefGoogle Scholar
  19. 19.
    Kung, E. O., A. S. Les, F. Medina, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J. Biomech. Eng. 133(4):041003, 2011.  https://doi.org/10.1115/1.4003526.CrossRefGoogle Scholar
  20. 20.
    Kung, E. O., and C. A. Taylor. Development of a physical windkessel module to re-create in vivo vascular flow impedance for in vitro experiments. Cardiovasc. Eng. Technol. 2(1):2–14, 2011.  https://doi.org/10.1007/s13239-010-0030-6.CrossRefGoogle Scholar
  21. 21.
    Mortensen, N. A., F. Okkels, and H. Bruus. Reexamination of Hagen-Poiseuille flow: shape dependence of the hydraulic resistance in microchannels. Phys. Rev. E 71(5 Pt 2):057301, 2005.  https://doi.org/10.1103/PhysRevE.71.057301.CrossRefGoogle Scholar
  22. 22.
    Munson, B. R., T. H. Okiishi, and W. W. Huebsch. Fundamentals of Fluid Mechanics (6th ed.). Hoboken, NJ: Wiley, 2009.Google Scholar
  23. 23.
    Murgo, J. P., N. Westerhof, J. P. Giolma, and S. A. Altobelli. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 62(1):105–116, 1980.CrossRefGoogle Scholar
  24. 24.
    Ozeki, T., M. H. Kwon, J. Gu, M. J. Collins, J. M. Brassil, M. B. Miller, Jr, et al. Heart preservation using continuous ex vivo perfusion improves viability and functional recovery. Circ. J. 71(1):153–159, 2007.CrossRefGoogle Scholar
  25. 25.
    Pelgrim, G. J., M. Das, S. van Tuijl, M. van Assen, F. W. Prinzen, M. Stijnen, et al. Validation of myocardial perfusion quantification by dynamic CT in an ex vivo porcine heart model. Int. J. Cardiovasc. Imaging 33(11):1821–1830, 2017.  https://doi.org/10.1007/s10554-017-1171-6.CrossRefGoogle Scholar
  26. 26.
    Schechter, M. A., K. W. Southerland, B. J. Feger, D. Linder, Jr, A. A. Ali, L. Njoroge, et al. An isolated working heart system for large animal models. J. Vis. Exp. 88:e51671, 2014.  https://doi.org/10.3791/51671.CrossRefGoogle Scholar
  27. 27.
    Schuster, A., I. Grünwald, A. Chiribiri, R. Southworth, M. Ishida, G. Hay, et al. An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. J. Cardiovasc. Magn. Reson. 12(1):53, 2010.  https://doi.org/10.1186/1532-429X-12-53.CrossRefGoogle Scholar
  28. 28.
    Segers, P., E. R. Rietzschel, M. L. De Buyzere, N. Stergiopulos, N. Westerhof, L. M. Van Bortel, et al. Three- and four-element Windkessel models: assessment of their fitting performance in a large cohort of healthy middle-aged individuals. Proc. Inst. Mech. Eng. Part H 222(4):417–428, 2008.  https://doi.org/10.1243/09544119jeim287.CrossRefGoogle Scholar
  29. 29.
    Skrzypiec-Spring, M., B. Grotthus, A. Szelag, and R. Schulz. Isolated heart perfusion according to Langendorff—still viable in the new millennium. J. Pharmacol. Toxicol. Methods. 55(2):113–126, 2007.  https://doi.org/10.1016/j.vascn.2006.05.006.CrossRefGoogle Scholar
  30. 30.
    Stergiopulos, N., J. J. Meister, and N. Westerhof. Scatter in input impedance spectrum may result from the elastic nonlinearity of the arterial wall. Am. J. Physiol. 269(4 Pt 2):H1490–H1495, 1995.  https://doi.org/10.1152/ajpheart.1995.269.4.H1490.CrossRefGoogle Scholar
  31. 31.
    Stergiopulos, N., B. E. Westerhof, and N. Westerhof. Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. 276(1):H81–H88, 1999.  https://doi.org/10.1152/ajpheart.1999.276.1.H81.CrossRefGoogle Scholar
  32. 32.
    Tefft, B. J., J. A. Choe, M. D. Young, R. S. Hennessy, D. W. Morse, J. A. Bouchard, et al. Cardiac valve bioreactor for physiological conditioning and hydrodynamic performance assessment. Cardiovasc. Eng. Technol. 10(1):80–94, 2019.  https://doi.org/10.1007/s13239-018-00382-2.CrossRefGoogle Scholar
  33. 33.
    Tevaearai Stahel, H. T., A. Zuckermann, T. P. Carrel, and S. L. Longnus. Hearts not dead after circulatory death. Front. Surg. 2:46, 2015.  https://doi.org/10.3389/fsurg.2015.00046.CrossRefGoogle Scholar
  34. 34.
    Tozzi, P., A. Corno, and D. Hayoz. Definition of arterial compliance. Am. J. Physiol.-Heart Circ. Physiol. 278(4):H1407, 2000.  https://doi.org/10.1152/ajpheart.2000.278.4.h1407.CrossRefGoogle Scholar
  35. 35.
    Westerhof, N., G. Elzinga, and P. Sipkema. An artificial arterial system for pumping hearts. J. Appl. Physiol. 31(5):776–781, 1971.  https://doi.org/10.1152/jappl.1971.31.5.776.CrossRefGoogle Scholar
  36. 36.
    Westerhof, N., N. Stergiopulos, M. Noble. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education, 2005.Google Scholar
  37. 37.
    White, C. W., E. Ambrose, A. Muller, Y. Li, H. Le, B. Hiebert, et al. Assessment of donor heart viability during ex vivo heart perfusion. Can. J. Physiol. Pharmacol. 93(10):893–901, 2015.  https://doi.org/10.1139/cjpp-2014-0474.CrossRefGoogle Scholar
  38. 38.
    Xin, L., B. Gellner, R. V. P. Ribeiro, G. M. Ruggeri, D. Banner, M. Meineri, et al. A new multi-mode perfusion system for ex vivo heart perfusion study. J. Med. Syst. 42(2):25, 2017.  https://doi.org/10.1007/s10916-017-0882-5.CrossRefGoogle Scholar
  39. 39.
    Xin, L., W. Yao, Y. Peng, P. Lu, R. Ribeiro, B. Wei, et al. Primed left ventricle heart perfusion creates physiological aortic pressure in porcine hearts. ASAIO J. 2019.  https://doi.org/10.1097/mat.0000000000000947.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Bryan Gellner
    • 1
    • 2
  • Liming Xin
    • 1
    • 3
    • 8
  • Roberto Vanin Pinto Ribeiro
    • 3
    • 5
  • Ved Bissoondath
    • 3
  • Pengzhou Lu
    • 1
    • 3
  • Mitchell B. Adamson
    • 3
    • 5
  • Frank Yu
    • 3
  • Emanuela Paradiso
    • 6
  • Jean Zu
    • 1
  • Craig A. Simmons
    • 1
    • 2
    • 7
    Email author
  • Mitesh V. Badiwala
    • 3
    • 4
  1. 1.Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Translational Biology & Engineering ProgramTed Rogers Centre for Heart ResearchTorontoCanada
  3. 3.Division of Cardiovascular Surgery, Toronto General HospitalUniversity Health NetworkTorontoCanada
  4. 4.Department of SurgeryUniversity of TorontoTorontoCanada
  5. 5.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  6. 6.Department of Anesthesia and Pain Management, Toronto General HospitalUniversity Health NetworkTorontoCanada
  7. 7.Institute of Biomaterials & Biomedical EngineeringUniversity of TorontoTorontoCanada
  8. 8.State Key Laboratory of Mechanical TransmissionsChongqing UniversityChongqingChina

Personalised recommendations