Advertisement

Effects of Normal Variation in the Rotational Position of the Aortic Root on Hemodynamics and Tissue Biomechanics of the Thoracic Aorta

  • Elias SundströmEmail author
  • Raghuvir Jonnagiri
  • Iris Gutmark-Little
  • Ephraim Gutmark
  • Paul Critser
  • Michael D. Taylor
  • Justin T. Tretter
Original Article
  • 41 Downloads

Abstract

Purpose

Variation in the rotational position of the aortic root relative to the left ventricle is present in normal trileaflet aortic valves. Its impact on the resulting fluid mechanics of blood flow in the thoracic aorta and structural mechanics in the aortic wall are unknown. We aimed to determine the regional hemodynamic and biomechanical differences in different rotational positions of the normal aortic root (clockwise, central, and counterclockwise positions).

Method

Cardiac magnetic resonance imaging (CMR) data was acquired from a normal pediatric patient. These were used for reconstruction of the aortic valve and thoracic aorta 3D model. Fluid–structure interaction (FSI) simulations were employed to study the influence of the root rotation with a central position as compared to observed extreme variations. Patient-specific phase-encoding CMR data were used to assess the validity of computed blood flow. The 3D FSI model was coupled with Windkessel boundary conditions that were tuned for physiological pressures. A grid velocity function was adopted for the valve motion during the systolic period.

Results

The largest wall shear stress level is detected in the clockwise positioned aortic root at the sinutubular junction. Two counter-rotating vortex cores are formed within the aortic root of both the central and extreme root configurations, however, in the clockwise root the vortex system becomes more symmetric. This also coincides with more entrainment of the valve jet and more turbulence production along the shear layer.

Conclusion

A clockwise rotational position of the aortic root imparts an increased wall shear stress at the sinutubular junction and proximal ascending aorta in comparison to other root rotation positions. This may pose increased risk for dilation of the sinutubular junction and ascending aorta in the patient with a clockwise positioned aortic root compared to other normal positional configurations.

Keywords

Aorta Aortic valve Ascending aorta Fluid–structure interaction Magnetic resonance 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adriaans, B. P., S. Heuts, S. Gerretsen, E. C. Cheriex, R. Vos, E. Natour, et al. Aortic elongation part I: the normal aortic ageing process. Heart 104:1772–1777, 2018.CrossRefGoogle Scholar
  2. 2.
    Amofa, D., S. Mori, H. Toh, H. T. Ta, M. Du Plessis, N. Davis, et al. The rotational position of the aortic root related to its underlying ventricular support. Clin. Anat. 32:1107–1117, 2019.CrossRefGoogle Scholar
  3. 3.
    Brown, A. G., Y. Shi, A. Marzo, C. Staicu, I. Valverde, P. Beerbaum, et al. Accuracy vs. computational time: Translating aortic simulations to the clinic. J. Biomech. 45:516–523, 2012.CrossRefGoogle Scholar
  4. 4.
    Chen, J., E. Gutmark, G. Mylavarapu, P. F. Backeljauw, and I. Gutmark-Little. Numerical investigation of mass transport through patient-specific deformed aortae. J. Biomech. 47:544–552, 2014.CrossRefGoogle Scholar
  5. 5.
    Coogan, J. S., J. D. Humphrey, and C. A. Figueroa. Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomech. Model. Mechanobiol. 12:79–93, 2013.CrossRefGoogle Scholar
  6. 6.
    Crosetto, P., P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarteroni. Fluid-structure interaction simulation of aortic blood flow. Comput. Fluids 43:46–57, 2011.MathSciNetCrossRefGoogle Scholar
  7. 7.
    De Kerchove, L., M. Momeni, G. Aphram, C. Watremez, X. Bollen, R. Jashari, et al. Free margin length and coaptation surface area in normal tricuspid aortic valve: an anatomical study. Eur. J. Cardio-thorac. Surg. 53:1040–1048, 2018.CrossRefGoogle Scholar
  8. 8.
    Deng, X., X. Liu, D. Li, F. Pu, S. Li, and Y. Fan. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Circ. Physiol. 297:163–170, 2009.Google Scholar
  9. 9.
    Evegren, P., J. Revstedt, and L. Fuchs. Pulsating flow and mass transfer in an asymmetric system of bifurcations. Comput. Fluids 49:46–61, 2011.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, S. Pujol, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30:1323–1341, 2012.CrossRefGoogle Scholar
  11. 11.
    Ferziger, J. H., and M. Perić. Computational Methods for Fluid Dynamics (3 rev ed.). Berlin: Springer, 2012.zbMATHGoogle Scholar
  12. 12.
    Hoskoppal, A., S. Menon, F. Trachtenberg, K. M. Burns, J. De Backer, B. D. Gelb, et al. Predictors of rapid aortic root dilation and referral for aortic surgery in marfan syndrome. Pediatr. Cardiol. 39:1453–1461, 2018.CrossRefGoogle Scholar
  13. 13.
    Kallenbach, K., M. Karck, D. Pak, R. Salcher, N. Khaladj, R. Leyh, et al. Decade of aortic valve sparing reimplantation: are we pushing the limits too far? Circulation 112:1253–1259, 2005.Google Scholar
  14. 14.
    Karimi, S., M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, and P. Jalali. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J. Nonnewton. Fluid Mech. 207:42–52, 2014.CrossRefGoogle Scholar
  15. 15.
    Lantz, J., R. Gårdhagen, and M. Karlsson. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation. Med. Eng. Phys. 34:1139–1148, 2012.CrossRefGoogle Scholar
  16. 16.
    Mao, W., K. Li, and W. Sun. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7:374–388, 2016.CrossRefGoogle Scholar
  17. 17.
    Mathur, S. R., and J. Y. Murthy. A pressure-based method for unstructured meshes. Numer. Heat Transf Part B Fundam. 31:195–214, 1997.CrossRefGoogle Scholar
  18. 18.
    Mori, S., J. T. Tretter, T. Toba, Y. Izawa, N. Tahara, T. Nishii, et al. Relationship between the membranous septum and the virtual basal ring of the aortic root in candidates for transcatheter implantation of the aortic valve. Clin. Anat. 31:525–534, 2018.CrossRefGoogle Scholar
  19. 19.
    MUMPS. MUltifrontal massively parallel solver (MUMPS 5.0.2) users’s guide, 2016.Google Scholar
  20. 20.
    Nathan, D. P., C. Xu, J. H. Gorman, R. M. Fairman, J. E. Bavaria, R. C. Gorman, et al. Pathogenesis of acute aortic dissection: a finite element stress analysis. Ann. Thorac. Surg. 91:458–463, 2011.CrossRefGoogle Scholar
  21. 21.
    Nathan, D. P., C. Xu, T. Plappert, B. Desjardins, J. H. Gorman, J. E. Bavaria, et al. Increased ascending aortic wall stress in patients with bicuspid aortic valves. Ann. Thorac. Surg. 92:1384–1389, 2011.CrossRefGoogle Scholar
  22. 22.
    Nestola, M. G. C., E. Faggiano, C. Vergara, R. M. Lancellotti, S. Ippolito, C. Antona, et al. Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput. Methods Biomech. Biomed. Eng. 20:171–181, 2017.CrossRefGoogle Scholar
  23. 23.
    Pasta, S., G. Gentile, G. M. Raffa, D. Bellavia, G. Chiarello, R. Liotta, et al. In silico shear and intramural stresses are linked to aortic valve morphology in dilated ascending aorta. Eur. J. Vasc. Endovasc. Surg. 54:254–263, 2017.CrossRefGoogle Scholar
  24. 24.
    Pasta, S., A. Rinaudo, L. Angelo, M. Pilato, C. Scadulla, T. G. Gleason, et al. Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysm with bicuspid and tricuspid aortic valve. J. Biomech. 42:157–162, 2013.Google Scholar
  25. 25.
    Perić, M., R. Kessler, and G. Scheuerer. Comparison of finite-volume numerical methods with staggered and colocated grids. Comput. Fluids 16:389–403, 1988.CrossRefGoogle Scholar
  26. 26.
    Prahl Wittberg, L., S. van Wyk, L. Fuchs, E. Gutmark, P. Backeljauw, and I. Gutmark-Little. Effects of aortic irregularities on blood flow. Biomech. Model. Mechanobiol. 15:345–360, 2016.CrossRefGoogle Scholar
  27. 27.
    Reymond, P., P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 35:784–791, 2013.CrossRefGoogle Scholar
  28. 28.
    Richardson, L. F. The approximate arithmetical solution by finite differences of physical problems involving differential equations. Philos. Trans. R Soc. Lond. Ser. A 210:307–357, 1911.CrossRefGoogle Scholar
  29. 29.
    Rosero, E. B., R. M. Peshock, A. Khera, P. Clagett, H. Lo, and C. H. Timaran. Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample. J. Vasc. Surg. 53:950–957, 2011.CrossRefGoogle Scholar
  30. 30.
    Saad, Y. Iterative Methods for Sparse Linear Systems (2nd ed.). Philadelphia: SIAM, 2003.CrossRefGoogle Scholar
  31. 31.
    Sahasakul, Y., W. D. Edwards, J. M. Naessens, and A. J. Tajik. Age-related changes in aortic and mitral valve thickness: Implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am. J. Cardiol. 62:424–430, 1988.CrossRefGoogle Scholar
  32. 32.
    Saliba, E., and Y. Sia. The ascending aortic aneurysm: when to intervene? IJC Hear Vasc. 6:91–100, 2015.CrossRefGoogle Scholar
  33. 33.
    Saremi, F., S. Cen, N. Tayari, H. Alizadeh, A. Emami, L. Lin, et al. A correlative study of aortic valve rotation angle and thoracic aortic sizes using ECG gated CT angiography. Eur. J. Radiol. 89:60–66, 2017.CrossRefGoogle Scholar
  34. 34.
    Singh, S. D., X. Y. Xu, N. B. Wood, J. R. Pepper, C. Izgi, T. Treasure, et al. Aortic flow patterns before and after personalised external aortic root support implantation in Marfan patients. J. Biomech. 49:100–111, 2016.CrossRefGoogle Scholar
  35. 35.
    Stalder, A. F., A. Frydrychowicz, M. F. Russe, J. G. Korvink, J. Hennig, K. Li, et al. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Magn. Reson. Imaging. 33:839–846, 2011.CrossRefGoogle Scholar
  36. 36.
    Sundström, E., M. Mihăescu, M. Giachi, E. Belardini, and V. Michelassi. Analysis of vaneless diffuser stall instability in a centrifugal compressor. Int. J. Turbomachinery Propuls Power. 2:19, 2017.  https://doi.org/10.3390/ijtpp2040019.CrossRefGoogle Scholar
  37. 37.
    Sundström, E., and L. Oren. Pharyngeal flow simulations during sibilant sound in a patient-specific model with velopharyngeal insufficiency. J. Acoust. Soc. Am. 145:3137–3145, 2019.  https://doi.org/10.1121/1.5108889.CrossRefGoogle Scholar
  38. 38.
    Sundström, E., B. Semlitsch, and M. Mihăescu. Acoustic signature of flow instabilities in radial compressors. J. Sound Vib. 434:221–236, 2018.  https://doi.org/10.1016/j.jsv.2018.07.040.CrossRefGoogle Scholar
  39. 39.
    Sundström, E., B. Semlitsch, and M. Mihăescu. Generation mechanisms of rotating stall and surge in centrifugal compressors. Flow Turbul. Combust. 100:705–719, 2018.  https://doi.org/10.1007/s10494-017-9877-z.CrossRefGoogle Scholar
  40. 40.
    Sundström, E. T., and M. N. Tomac. Synchronization and flow characteristics of the opposed facing oscillator pair in back-to-back configuration. Flow Turbul. Combust. 100:1–17, 2019.  https://doi.org/10.1007/s10494-019-00064-6.CrossRefGoogle Scholar
  41. 41.
    Tretter, J. T., S. Mori, F. Saremi, S. Chikkabyrappa, K. Thomas, F. Bu, et al. Variations in rotation of the aortic root and membranous septum with implications for transcatheter valve implantation. Heart. 104:999–1005, 2018.CrossRefGoogle Scholar
  42. 42.
    van Wyk, S., L. Prahl Wittberg, and L. Fuchs. Wall shear stress variations and unsteadiness of pulsatile blood-like flows in 90-degree bifurcations. Comput. Biol. Med. 43:1025–1036, 2013.CrossRefGoogle Scholar
  43. 43.
    Westerhof, N., G. Elzinga, and P. Sipkema. An artificial arterial system for pumping hearts. J. Appl. Physiol. 31:776–781, 1971.CrossRefGoogle Scholar
  44. 44.
    Zienkiewicz, O. C., R. L. Taylor, and D. Fox. The Finite Element Method for Solid and Structural Mechanics (7th ed.). Amsterdam: Elsevier, 2013.zbMATHGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Otolaryngology-Head and Neck SurgeryUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Aerospace Engineering and Engineering MechanicsUniversity of CincinnatiCincinnatiUSA
  3. 3.Division of Endocrine, Department of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.Heart InstituteCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.Department of PediatricsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations