Advertisement

Cardiovascular Engineering and Technology

, Volume 10, Issue 3, pp 423–436 | Cite as

Evaluating the Performance of Cardiac Pulse Duplicators Through the Concept of Fidelity

  • Reynaldo A. Rodriguez
  • Kiran H. Dellimore
  • Jacobus H. MüllerEmail author
Article
  • 122 Downloads

Abstract

Introduction

The advanced design techniques used in modern prosthetic heart valve (PHV) development require accurate replication of the entire cardiac cycle. While cardiac pulse duplicator (CPD) design has a direct impact on the PHV test data generated, no clear guidelines exist to evaluate the CPD’s performance. In response to this, we present a method to quantitatively assess CPD performance.

Materials and Methods

A method to establish the fidelity of CPDs was formulated based on the pressure/time relationship and the error related to this relationship’s target. This method was applied to assess the performance of a custom-made CPD. The performance evaluation included the assessment of the motion control system and overall repeatability of pressure measurements using a St Jude Epic 21 mm aortic valve.

Results

The CPD’s motion control system had an average root mean square error (RMSE) beat-to-beat tracking accuracy of 0.046 ± 0.008 mm. Assessment of the pressure measurements yielded a repeatability of < 2.4 ± 0.9 mmHg RMSE beat-to-beat differential pressure. The combination of pressure and its location within a heartbeat (fidelity) was within 5.0% of the individual targets for at least 95% of heartbeats.

Conclusion

Fidelity can be used to objectively quantify the performance of various aspects of CPDs and to identify the cause of unexpected PHV or CPD behaviour. It also enables comparisons to be made among various CPDs in terms of overall performance. This approach may enable standardization of the assessment of CPD performance in the future.

Keywords

Heart valve testing Cardiac pulse duplicator Fidelity In vitro hemodynamics Prosthetic heart valves Performance assessment 

Notes

Acknowledgments

The authors wish to thank Dr. Helmuth Weich and Prof Anton Doubell (Division of Cardiology, Tygerberg Hospital and Stellenbosch University, South Africa) for supplying the prosthetic heart valve used in this study.

Conflict of interest

RA Rodriguez and JH Muller declare that they have no conflict of interest. KH Dellimore is an employee of Philips Research, in Eindhoven, The Netherlands.

Human Studies

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.

Supplementary material

13239_2019_416_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)
13239_2019_416_MOESM2_ESM.xlsx (62 kb)
Supplementary material 2 (XLSX 62 kb)

References

  1. 1.
    Baruch, M. C., K. Kalantari, D. W. Gerdt, and C. M. Adkins. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure. BioMed. Eng. Online 13:96, 2014.CrossRefGoogle Scholar
  2. 2.
    Bazan, O., and J. P. Ortiz. Experimental validation of a cardiac simulator for in vitro evaluation of prosthetic heart valves. Braz. J. Cardiovasc. Surg. 31(2):151–157, 2016.Google Scholar
  3. 3.
    Beulen, B. W. A. M. M., N. Bijnens, G. G. Koutsouridis, P. J. Brands, M. C. M. Rutten, and F. N. van de Vosse. Toward noninvasive blood pressure assessment in arteries by using ultrasound. Ultrasound Med. Biol. 37(5):788–797, 2011.CrossRefGoogle Scholar
  4. 4.
    Bjork, V. O., F. Intonti, and A. Meissl. A mechanical pulse duplicator for testing prosthetic mitral and aortic valves. Thorax 17:280–283, 1962.CrossRefGoogle Scholar
  5. 5.
    Bottio, T., E. Buratto, C. Dal Lin, A. Lika, G. Rizzoli, and G. Gerosa. Aortic valve hydrodynamics: Considerations on the absence of sinuses of Valsalva. J. Heart Valve Dis. 21(6):718–723, 2012.Google Scholar
  6. 6.
    Bottio, T., V. Tarzia, G. Rizzoli, and G. Gerosa. The changing spectrum of bioprostheses hydrodynamic performance: Considerations on in vitro tests. Interact Cardiovasc. Thorac. Surg. 7(5):750–754, 2008.CrossRefGoogle Scholar
  7. 7.
    D’Avenio, G., M. Grigioni, C. Daniele, U. Morbiducci, and K. Hamilton. 3D velocity field characterization of prosthetic heart valve with two different valve testers by means of stereo-PIV. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015:3327–3330, 2015.Google Scholar
  8. 8.
    Davila, J., R. Trout, J. Sunner, and R. Glover. A simple mechanical pulse duplicator for cinematography of cardiac valves in action. Ann. Surg. 143(4):544–551, 1956.CrossRefGoogle Scholar
  9. 9.
    Duran, C. G., A. J. Gunning, and T. McMillan. A simple versatile pulse duplicator. Thorax 19:503–506, 1964.CrossRefGoogle Scholar
  10. 10.
    Goodale, F., and R. Shaw. Functional examination of the heart at autopsy. N. Engl. J. Med. 253:719–721, 1955.CrossRefGoogle Scholar
  11. 11.
    Hasler, D., A. Landlot, and D. Obrist. Tomographic PIV behind a prosthetic heart valve. Exp. Fluids 57:80, 2016.CrossRefGoogle Scholar
  12. 12.
    International Organization for Standardization. Cardiovascular Implants—Cardiac Valve Prostheses. ISO5840:2005. Geneva: ISO, 2005.Google Scholar
  13. 13.
    International Organization for Standardization. Cardiovascular Implants—Cardiac Valve Prostheses—Part 3: Heart Valve Substitutes Implanted by Transcatheter Techniques. EN ISO5840-3:2013. Geneva: ISO, 2013.Google Scholar
  14. 14.
    Kelley, R. R., F. Goodale, Jr, and B. Castleman. The dynamics of rheumatic and calcific aortic valve disease. Circulation 22:365–375, 1960.CrossRefGoogle Scholar
  15. 15.
    Kemp, I., K. Dellimore, R. Rodriguez, C. Scheffer, D. Blaine, H. Weich, and A. F. Doubell. Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve. Australas. Phys. Eng. Sci. Med. 36(3):363–373, 2013.CrossRefGoogle Scholar
  16. 16.
    Laske, A., R. Jenni, M. Maloigne, G. Vassalli, O. Bertel, and M. Turina. Pressure gradients across bileaflet aortic valves by direct measurement and echocardiography. Ann. Thorac. Surg. 61:48–57, 1996.CrossRefGoogle Scholar
  17. 17.
    Latham, R. D., N. Westerhof, P. Sipkema, B. J. Rubal, P. Reuderink, and J. P. Murgo. Regional wave travel and reflections along the human aorta: A study with six simultaneous micromanometric pressures. Circulation 6(1257):69, 1985.Google Scholar
  18. 18.
    Mao, W., K. Li, and W. Sun. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics. Cardiovasc. Eng. Technol. 7(4):374–388, 2016.CrossRefGoogle Scholar
  19. 19.
    McMillan, I. K. R., R. Daley, and M. B. Matthews. The movement of aortic and pulmonary valves studied post mortem by colour cinematography. Br. Heart J. 14(1):42–46, 1952.CrossRefGoogle Scholar
  20. 20.
    Murgo, J. P., N. Westerhof, J. P. Giolma, and S. A. Altobelli. Aortic input impedance in normal man: Relationship to pressure wave forms. Circulation 62:105–116, 1980.CrossRefGoogle Scholar
  21. 21.
    Pisani, G., R. Scaffa, O. Ieropoli, E. M. Dell’Amico, D. Maselli, U. Morbiducci, and R. De Paulis. Role of the sinuses of Valsalva on the opening of the aortic valve. J. Thorac. Cardiovasc. Surg. 145:999–1003, 2013.CrossRefGoogle Scholar
  22. 22.
    Ramaswamy, S., M. Salinas, R. Carrol, K. Landaburo, X. Ryans, C. Crespo, A. Rivero, F. Al-Mousily, C. DeGroff, M. Bleiweis, and H. Yamaguchi. Protocol for relative hydrodynamic assessment of tri-leaflet polymer valves. J. Vis. Exp. 80:50335, 2013.Google Scholar
  23. 23.
    Robicsek, F., and M. Thubrikar. Role of sinus wall compliance in aortic leaflet function. Am. J. Cardiol. 84(8):944–946, 1999.CrossRefGoogle Scholar
  24. 24.
    Salica, A., G. Pisani, U. Morbiducci, R. Scaffa, D. Massai, A. Audenino, L. Weltert, L. Guerrieri Wolf, and R. De Paulis. The combined role of sinuses of Valsalva and flow pulsatility improves energy loss of the aortic valve. Eur. J. Cardiothorac. Surg. 49:1222–1227, 2016.CrossRefGoogle Scholar
  25. 25.
    Segers, P., F. Dubois, D. De Wachter, and P. Verdonck. Role and relevancy of a cardiovascular simulator. Cardiovasc. Eng. 3(1):48–56, 1998.Google Scholar
  26. 26.
    Segur, J. B., and H. E. Oberstar. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43:2117–2120, 1951.CrossRefGoogle Scholar
  27. 27.
    Steppan, J., V. Barodka, D. E. Berkowitz, and D. Nyhan. Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol. Res. Pract. 2011:263585, 2011.CrossRefGoogle Scholar
  28. 28.
    Sugawara, M., K. Uchida, Y. Kondoh, N. Magosaki, K. Niki, C. J. H. Jones, M. Sugimachi, and K. Sunagawa. Aortic blood momentum—the more the better for the ejecting heart in vivo? Cardiovasc. Res. 33(2):433–446, 1997.CrossRefGoogle Scholar
  29. 29.
    Toninato, R., J. Salmon, F. M. Susin, A. Ducci, and G. Burriesci. Physiological vortices in the sinuses of Valsalva: An in vitro approach for bio-prosthetic valves. J Biomech 49(13):2635–2643, 2016.CrossRefGoogle Scholar
  30. 30.
    Vargas, D. E., B. V. Weidner, G. C. D’Antonio, and O. Pierrakos. A novel flow performance metric for the assessment of prosthetic heart valves. Proc. IEEE Syst. Inf. Eng. Des. Sympos. (SIEDS). 25(2014):255–259, 2014.Google Scholar
  31. 31.
    Vinet, A., S. Nottin, A. M. Lecoq, and P. Obert. Cardiovascular responses to progressive cycle exercise in healthy children and adults. Int. J. Sports Med. 23(4):242–246, 2002.CrossRefGoogle Scholar
  32. 32.
    Westerhof, N., N. Stergiopulos, and M. I. M. Noble. Viscosity. In: Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education, edited by N. Westerhof, N. Stergiopulos, and M. I. M. Noble. Boston: Springer, 2005, pp. 3–7.Google Scholar
  33. 33.
    Westerhof, B. E., J. P. van den Wijngaard, J. P. Murgo, and N. Westerhof. Location of a reflection site is elusive: Consequences for the calculation of aortic pulse wave velocity. Hypertension 52(478):83, 2008.Google Scholar
  34. 34.
    Yokoyama, Y., O. Kawaguchi, T. Shinshi, U. Steinseifer, and S. Takatani. A new pulse duplicator with a passive fill ventricle for analysis of cardiac dynamics. J. Artif. Organs 13:189–196, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Reynaldo A. Rodriguez
    • 1
  • Kiran H. Dellimore
    • 1
  • Jacobus H. Müller
    • 1
    Email author
  1. 1.Biomedical Engineering Research Group, Mechanical & Mechatronic EngineeringStellenbosch UniversityMatielandSouth Africa

Personalised recommendations