A Tunable Resonance Cantilever for Cardiac Energy Harvesting

  • Thomas W. SecordEmail author
  • Milad C. Audi



Energy harvesting from cardiac motion is an attractive means to avoid the use of batteries in implantable sensors and pacemakers. A single implantable device would ideally integrate both sensing and self-powering functionality.


This work describes a novel electromagnetic system that achieves high sensitivity detection of the heart rate while simultaneously providing adaptive energy harvesting capability using a tunable resonance cantilever mechanism.


Our prototype design exhibits tunability of resonant frequency across the range of physiologic heart rates at a combination of lengths and angular orientations. Our initial prototype also produces between 3.0 \(\mu\)W and 20.6 \(\mu\)W of power at heart rates of 79–243 bpm, respectively.


The prototype device can harvest sufficient energy to sustain implantable cardiac devices such as a leadless pacemaker. The system in this paper has the potential to eliminate batteries in certain implantable cardiac devices and thereby improve overall patient monitoring and treatment.


Energy harvesting Resonance Cardiology Electromagnetic induction Implantable medical devices Pacemakers 


Conflict of Interest

Thomas W. Secord is a former employee of Medtronic plc and Milad C. Audi declares that he has no conflict of interest. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Camm, A. J., M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R.J. Cohen, P. Coumel, E. L. Fallen, H.L. Kennedy, R. Kleiger, et al. Heart rate variability. standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17(3):354–381, 1996.CrossRefGoogle Scholar
  2. 2.
    Challa, V. R., M. Prasad, Y. Shi, and F. Fisher. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struc. 17(1):15035, 2008.CrossRefGoogle Scholar
  3. 3.
    Deterre, M., B. Boutaud, R. Dalmolin, S. Boisseau, J.J. Chaillout, E. Lefeuvre, and E. Dufour-Gergam. Energy harvesting system for cardiac implant applications. 2011 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), pp. 387–391, 2011.Google Scholar
  4. 4.
    Gieras, J. F., J. H. Oh, M. Huzmezan, and H. S. Sane. Electromechanical energy harvesting system. Patent: US8222775, 2012.Google Scholar
  5. 5.
    Goto, K., T. Nakagawa, O. Nakamura, and S. Kawata. An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng. 48(7):830–833, 2001.CrossRefGoogle Scholar
  6. 6.
    Henderson, D. Simple ceramic motor...inspiring smaller products. 10th International Conference on New Actuators, Bremen, Germany, pp. 1–4, 2006.Google Scholar
  7. 7.
    Hoffmann, D., A. Willmann, T. Hehn, B. Folkmer, and Y. Manoli, Y. A self-adaptive energy harvesting system. Smart Mater. Struc. 25(3):035013, 2016.CrossRefGoogle Scholar
  8. 8.
    Hu, W., Y. T. Liu, T. Nguyen, D. C. Lie, and B. P. Ginsburg, B.P. An 8-bit single-ended ultra-low-power SAR ADC with a novel DAC switching method and a counter-based digital control circuitry. IEEE Trans. Circ. Syst. 60(7):1726–1739, 2013.CrossRefGoogle Scholar
  9. 9.
    Huikuri, H. V., T. H. Mäkikallio, C. K. Peng, A. L. Goldberger, U. Hintze, M. Møller, et al. Fractal correlation properties of RR interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101(1):47–53, 2000.CrossRefGoogle Scholar
  10. 10.
    Karami, A. M., D. J. Inman. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100(4):042901, 2012.CrossRefGoogle Scholar
  11. 11.
    Khaligh, A., P. Zeng, C. Zheng. Kinetic energy harvesting using piezoelectric and electromagnetic technologies–state of the art. IEEE Trans. Ind. Electron. 57(3):850–860, 2010.CrossRefGoogle Scholar
  12. 12.
    Kluger, J. M., T. P. Sapsis, and A. H. Slocum. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams. J. Sound Vib. 341:174–194, 2015.CrossRefGoogle Scholar
  13. 13.
    Lee, H. Stability of a cantilever beam with tip mass subject to axial sinusoidal excitations. J. Sound Vib. 183(1):91–98, 1995.CrossRefzbMATHGoogle Scholar
  14. 14.
    Leland, E. S., and P. K. Wright. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struc. 15(5):1413, 2006.CrossRefGoogle Scholar
  15. 15.
    Liu, T., and C. Livemore. Passively tuning harvesting beam length to achieve very high harvesting bandwidth in rotating applications. Proceedings of PowerMEMS pp. 492–495, 2012.Google Scholar
  16. 16.
    Maceira, A. M., S. K. Prasad, M. Khan, and D. J. Pennell: Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur. Heart J. 27(23):2879–2888, 2006.CrossRefGoogle Scholar
  17. 17.
    Mah, P.Y. Faraday flashlight. Patent: US6729744, 2004.Google Scholar
  18. 18.
    Pfenniger, A., M. Jonsson, A. Zurbuchen, V. M. Koch, and R. Vogel. Energy harvesting from the cardiovascular system, or how to get a little help from yourself. Ann. Biomed. Eng. 41(11):2248–2263, 2013.CrossRefGoogle Scholar
  19. 19.
    Reynolds, D., G. Z. Duray, R. Omar, K. Soejima, P. Neuzil, S. Zhang, C. Narasimhan, C. Steinwender, J. Brugada, M. Lloyd, et al. A leadless intracardiac transcatheter pacing system. N. Engl. J. Med. 374(6):533–541, 2016.CrossRefGoogle Scholar
  20. 20.
    Ritter, P., G. Z. Duray, S. Zhang, C. Narasimhan, K. Soejima, R. Omar, V. Laager, K. Stromberg, E. Williams, and D. Reynolds. The rationale and design of the Micra transcatheter pacing study: safety and efficacy of a novel miniaturized pacemaker. EP Europace 17(5):807–813, 2015.CrossRefGoogle Scholar
  21. 21.
    Romero, E., R. Warrington, M. Neuman. Energy scavenging sources for biomedical sensors. Physiol. Meas. 30(9):R35, 2009.CrossRefGoogle Scholar
  22. 22.
    Secord, T. W., and H. H. Asada. A variable stiffness PZT actuator having tunable resonant frequencies. IEEE Trans. Robot. 26(6):993–1005, 2010.CrossRefGoogle Scholar
  23. 23.
    Secord, T. W., A. J. Johnson. A tunable-resonance faraday device for dual cardiac sensing and energy harvesting. In: IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 257–262, 2017.Google Scholar
  24. 24.
    Sodano, H. A., D. J. Inman, and G. Park. A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36(3):197–206, 2004.CrossRefGoogle Scholar
  25. 25.
    Tashiro, R., N. Kabei, K. Katayama, E. Tsuboi, and K. Tsuchiya. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif. Organs 5(4):0239–0245, 2002.CrossRefGoogle Scholar
  26. 26.
    Thanassoulis, G., J. M. Massaro, U. Hoffmann, A. Mahabadi, R. S. Vasan, C. J. O’Donnell, and C. S. Fox. Prevalence, distribution, and risk factor correlates of high pericardial and intrathoracic fat depots in the framingham heart study. Circulation: Cardiovasc. Imaging 3(5):559–566, 2010.Google Scholar
  27. 27.
    Von Büren, T., and G. Tröster. Design and optimization of a linear vibration-driven electromagnetic micro-power generator. Sens. Actuat. A: Phys. 135(2):765–775, 2007.CrossRefGoogle Scholar
  28. 28.
    Wu, W. J., Y. Y. Chen, B. S. Lee, J. J. He, and Y.T. Peng. Tunable resonant frequency power harvesting devices. In: Smart Structures and Materials, p. 61690A. International Society for Optics and Photonics, 2006.Google Scholar
  29. 29.
    Wu, X., J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu. A frequency adjustable vibration energy harvester. Proceedings of PowerMEMS, pp. 245–248, 2008.Google Scholar
  30. 30.
    Zurbuchen, A., A. Haeberlin, L. Bereuter, A. Pfenniger, S. Bosshard, M. Kernen, P. P. Heinisch, J. Fuhrer, and R. Vogel. Endocardial energy harvesting by electromagnetic induction. IEEE Trans. Biomed. Eng. 65(2):424–430, 2018.CrossRefGoogle Scholar
  31. 31.
    Zurbuchen, A., A. Pfenniger, A. Stahel, C. T. Stoeck, S. Vandenberghe, V. M. Koch, and R. Vogel. Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41(1):131–141, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.University of St. ThomasSt. PaulUSA

Personalised recommendations