MRI and Blood Flow in Human Arteries: Are There Any Adverse Effects?

  • K. Gayathri
  • K. ShailendhraEmail author



To explore if there are any adverse effects on blood flow in human beings when they are exposed to high or ultra high intensity magnetic fields in MRI, by investigating both qualitatively and quantitatively the effects of such fields on the velocity of blood and medically significant hemodynamic wall parameters such as wall shear stress (WSS), oscillatory shear index (OSI) and relative residence time (RRT) in four human large arteries.


Blood flow in an artery is approximated as a flow through a uniform circular tube with rigid porous walls and the well-known McDonalds model is employed by using pressure gradient waveforms reported in the medical literature.


No significant change in the above parameters is observed up to 3T in all these arteries except a discernible change in the velocity and RRT in the pulmonary artery. Very significant changes are noticed in the above parameters beyond 8T in the pulmonary artery. The common hypothesis that low WSS and high OSI co-locate is not acceptable.


Our results suggest that the clinical consequences are to be carefully considered before exposing human beings to ultra high field MRI. It may not be appropriate to conclude anything about the effect of magnetic field on blood flow in human beings based on experimental studies on animals, which is one of the reasons for the contradicting reports found in the literature. A slip condition at the wall which is appropriate to hemodynamics is yet to be developed.


High intensity static magnetic field Hemodynamic wall parameters Wall shear stress Oscillatory shear index Relative residence time Interface condition 


Conflict of interest

Gayathri K. and Shailendhra K. declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Abi Abdallah, D., A. Drochon, V. Robin, and O. Fokapu. Effects of static magnetic field exposure on blood flow. Eur Phys J Appl Phys 45:11301, 2009.CrossRefGoogle Scholar
  2. 2.
    Barnothy, M. F. Biological Effects of Magnetic Fields. Volume 1 and 2, Plenum Press, New York, 1964–1969.Google Scholar
  3. 3.
    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B 177:109–159, 1971.CrossRefGoogle Scholar
  4. 4.
    Chaturani, P., and S. S. Bharatiya. Two layered magnetohydrodynamic flow through parallel plates with applications. Indian J. Pure Appl. Math. 32(1):55–68, 2001.zbMATHGoogle Scholar
  5. 5.
    Cheng, C., F. Helderman, D. Tempel, and D. Segers. Review: large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 195:225–235, 2007.CrossRefGoogle Scholar
  6. 6.
    Committee on Opportunities in High Magnetic Field Science, Solid State Sciences Committee, Board on Physics and Astronomy Division on Engineering and Physical Sciences National Research Council of the National Academies, Opportunities in High Magnetic Field Science, The National Academies Press, Washington, DC, 2005.Google Scholar
  7. 7.
    Cosmus, T. C., and M. Parizh. Advances in whole body MRI magnets. IEEE Trans Appl Supercond 21(3):2104–2109, 2011.CrossRefGoogle Scholar
  8. 8.
    Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560, 1995.CrossRefGoogle Scholar
  9. 9.
    Formica, Domenico, and Sergio Silvestri. Biological effects of exposure to magnetic resonance imaging: an overview. Biomed. Eng. Online. 3:1–12, 2004.CrossRefGoogle Scholar
  10. 10.
    Fry, D. L. Certain chemorheologic considerations regarding the blood vascular interface with particular reference to coronary artery disease. Circulation 40:38–57, 1969.CrossRefGoogle Scholar
  11. 11.
    Gabe, I. T., J. H. Gault, J. Ross, D. T. Mason, C. J. Mills, J. P. Schillingford, and E. Braunwald. Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe. Circulation 40:603–614, 1969.CrossRefGoogle Scholar
  12. 12.
    Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293, 1996.CrossRefGoogle Scholar
  13. 13.
    Gayathri, K., and K. Shailendhra. Pulsatile blood flow in large arteries: a comparative study of Burton’s and McDonald’s models. Appl. Math. Mech. Engl. 35:575–590, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gayathri, K., and K. Shailendhra. Mathematical investigation of aetiology and pathogensis of atherosclerosis in human arteries. Int J Bioinform Res Appl 14:3–28, 2018.CrossRefGoogle Scholar
  15. 15.
    Gayathri, K., and K. Shailendhra. A mathematical modelling on the effect of high intensity magnetic fields on pulsatile blood flow in human arteries. Int. J. Bioinform. Res. Appl. 14:70–89, 2018.CrossRefGoogle Scholar
  16. 16.
    Geva, Tal. Magnetic resonance imaging: historical perspective. J. Cardiovasc. Magn. 8:573–580, 2006.CrossRefGoogle Scholar
  17. 17.
    Harvey, P. R., J. A. Overweg, C. Leonardus, G. Ham, N. B. Roozen, and P. W. P. Limpens. Open MRI magnet system, US7193416B2, 2007.Google Scholar
  18. 18.
    He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 118:74–82, 1996.CrossRefGoogle Scholar
  19. 19.
    Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, Xue-Mei Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.CrossRefGoogle Scholar
  20. 20.
    Kangarlu, A., R. E. Burgess, H. Zhu, T. Nakayama, R. L. Hamlin, A. M. Abduljalil, and P. M. L. Robitaille. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17:1407–1416, 1999.CrossRefGoogle Scholar
  21. 21.
    Keltner, J. R., M. S. Roos, P. R. Brakeman, and T. F. Budinger. Magnetohydrodynamics of blood flow. Magn Reson Med 16:139–149, 1990.CrossRefGoogle Scholar
  22. 22.
    Kolin, A. An electromagnetic flowmeter: principle of method and its application to blood flow measurements. Exp. Biol. Med. 35:53–56, 1936.CrossRefGoogle Scholar
  23. 23.
    Korchevskii, E. M., and L. S. Marcochnik. Magnetohydrodynaic version of movement of blood. Biophysics. 10:411–413, 1965.Google Scholar
  24. 24.
    Kornet, L., A. P. Hoeks, J. Lambregts, and R. S. Reneman. Mean wall shear stress in the femoral arterial bifurcation is low and independent of age at rest. J Vasc Res 37:112–122, 2000.CrossRefGoogle Scholar
  25. 25.
    Lee, S., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng 131:061013–1–061013-7, 2009.CrossRefGoogle Scholar
  26. 26.
    Malek, A. M., S. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.CrossRefGoogle Scholar
  27. 27.
    McKay, J. C., F. S. Prato, and A. W. Thomas. A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics. 28:81–98, 2007.CrossRefGoogle Scholar
  28. 28.
    Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries, Theoretical, Experimental and Clinical Principles (5th ed.). New York: Oxford University Press, 2005.Google Scholar
  29. 29.
    Novak, V. A. M., P. Novak Abduljalil, and P. M. Robitaille. High-resolution ultrahigh-field MRI of stroke. Magn Reson Imaging 23:539–548, 2005.CrossRefGoogle Scholar
  30. 30.
    Ofili, E. O., M. J. Kern, A. J. Labovitz, J. A. S. T. Vrain, J. Segal, F. V. Aguirre, and R. Castello. Analysis of coronary blood flow velocity dynamics in angiographically normal and stenosed arteries before and after endolumen enlargement by angioplasty. J Am Coll Cardiol 21:308–316, 1993.CrossRefGoogle Scholar
  31. 31.
    Schenck, J. F. Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19, 2000.CrossRefGoogle Scholar
  32. 32.
    Shoemaker, J. K., S. M. Phillips, H. J. Green, and R. L. Hughson. Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovasc Res 31:278–286, 1996.CrossRefGoogle Scholar
  33. 33.
    Shukla, J. B., R. S. Parihar, and B. R. P. Rao. Effect of stenosis on non-Newtonian flow of the blood in an artery. Bull Math Biol 42:283–294, 1980.CrossRefzbMATHGoogle Scholar
  34. 34.
    Sinoway, L. I., C. Hendrickson, W. R. Davidson, S. Prophet, and R. Zelis. Characteristics of flow-mediated brachial artery vasodilation in human subjects. Circ Res 64:32–42, 1989.CrossRefGoogle Scholar
  35. 35.
    Tang, B. T., S. S. Pickard, F. P. Chan, P. S. Tsao, C. A. Taylor, and J. A. Feinstein. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulm. Circ. 2:470–476, 2012.CrossRefGoogle Scholar
  36. 36.
    Terada, M., Yasuo Takehara, Haruo Isoda, Tomohiro Uto, Masaki Matsunaga, and Marcus Alley. Low WSS high OSI measured by 3D Cine PC MRI reflect high pulmonary artery pressures in suspected secondary pulmonary arterial hypertension. Magn. Reson. Med. Sci. 15:193–202, 2016.CrossRefGoogle Scholar
  37. 37.
    Thosar, S. S., S. L. Bielko, C. C. Wiggins, and J. P. Wallace. Differences in brachial and femoral artery responses to prolonged sitting. Cardiovasc. Ultrasound 12:50, 2014.CrossRefGoogle Scholar
  38. 38.
    Tzirtzilakis, E. E. A mathematical model for blood flow in magnetic field. Phys Fluids 17:077103–1–077103-15, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ugurbil, K., G. Adriany, P. Andersen, W. Chen, M. Garwood, R. Gruetter, P.-G. Henry, S.-G. Kim, H. Lieu, I. Tkac, T. Vaughan, P.-F. Van De Moortele, E. Yacoub, and X.-H. Zhu. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281, 2003.CrossRefGoogle Scholar
  40. 40.
    Verbeke, F. H., M. Agharazii, P. Boutouyrie, B. Pannier, A. P. Guenin, and G. M. London. Local shear stress and brachial artery functions in end-stage renal disease. J Am Soc Nephrol 18:621–628, 2007.CrossRefGoogle Scholar
  41. 41.
    Vinod, T., R. K. Purushothaman, K. Shailendhra, and Gayathri K. Pulsatile blood flow in large arteries with BJR slip condition. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT-2016). 1700–1705, 2016.Google Scholar
  42. 42.
    Whale, M. D., A. J. Grodzinsky, and M. Johnson. The effect of aging and pressure on the specific hydraulic conductivity of the aortic wall. Biorheology 33:17–44, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Amrita School of Engineering, CoimbatoreAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations