Advertisement

Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length

  • 106 Accesses

  • 1 Citations

Abstract

Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya–Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Aviram, G., D. Cohen, A. Steinvil, H. Shmueli, G. Keren, S. Banai, et al. Significance of reflux of contrast medium into the inferior vena cava on computerized tomographic pulmonary angiogram. Am. J. Cardiol. 109(3):432–437, 2012. https://doi.org/10.1016/j.amjcard.2011.09.033.

  2. 2.

    Becker, H. A. Discussion:“Confined jet mixing for nonseparating conditions”(Razinsky, E., and Brighton, JA, 1971, ASME J. Basic Eng., 93, pp. 333–347). J. Basic Eng. 93(3):347, 1971.

  3. 3.

    Celtikci, P., O. Eraslan, O. Ergun, E. Soyer Guldogan, and M. E. Turkoglu. Active rebleeding from a ruptured middle cerebral artery aneurysm during diagnostic catheter angiography. Turk Neurosurg. 2017. https://doi.org/10.5137/1019-5149.jtn.19629-16.2.

  4. 4.

    Demirpolat, G., M. Yuksel, G. Kavukcu, and D. Tuncel. Carotid CT angiography: comparison of image quality for left versus right arm injections. Diagn. Interv. Radiol. 17(3):195–198, 2011. https://doi.org/10.4261/1305-3825.dir.3290-10.1.

  5. 5.

    Dublin, A. B., and B. N. French. Cerebral aneurysmal rupture during angiography with confirmation by computed tomography: a review of intra-angiographic aneurysmal rupture. Surg. Neurol. 13(1):19–26, 1980.

  6. 6.

    Dusaj, R. S., K. C. Michelis, M. Terek, R. Sanai, R. Mittal, J. F. Lewis, et al. Estimation of right atrial and ventricular hemodynamics by CT coronary angiography. J Cardiovasc Comput Tomogr. 5(1):44–49, 2011. https://doi.org/10.1016/j.jcct.2010.10.005.

  7. 7.

    Endres, J., Redel, T., Kowarschik, M., Hutter, J., Hornegger, J., Doerfler, A. (eds.). Virtual angiography using CFD simulations based on patient-specific parameter optimization. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012.

  8. 8.

    Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, et al. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24(12):1586–1592, 2005.

  9. 9.

    Genereux, P., R. Mehran, M. B. Leon, N. Bettinger, and G. W. Stone. Classification for assessing the quality of diagnostic coronary angiography. J. Invasive Cardiol. 29:417–420, 2017.

  10. 10.

    Gianturco, C., T. Shimizu, F. R. Stefferda, and R. P. Taylor. Measurement of blood flow by angiography with increasing rate of injection: experimental study. Investig. Radiol. 5(5):361–363, 1970.

  11. 11.

    Hao, Q., and B. B. Lieber. Dispersive transport of angiographic contrast during antegrade arterial injection. Cardiovasc. Eng. Technol. 3(2):171–178, 2012.

  12. 12.

    Hayakawa, K., T. W. Morris, R. W. Katzberg, and H. W. Fischer. Cardiovascular responses to the intravertebral artery injection of hypertonic contrast media in the dog. Investig. Radiol. 20(2):217–221, 1985.

  13. 13.

    Henriksen, J. H., G. B. Jensen, and H. B. Larsson. A century of indicator dilution technique. Clin. Physiol. Funct. Imaging 34(1):1–9, 2014. https://doi.org/10.1111/cpf.12068.

  14. 14.

    Hilal, S. K. Hemodynamic changes associated with the intra-arterial injection of contrast media. New toxicity tests and a new experimental contrast medium. Radiology 86(4):615–633, 1966. https://doi.org/10.1148/86.4.615.

  15. 15.

    Hingwala, D. R., B. Thomas, C. Kesavadas, and T. R. Kapilamoorthy. Suboptimal contrast opacification of dynamic head and neck MR angiography due to venous stasis and reflux: technical considerations for optimization. AJNR Am. J. Neuroradiol. 32(2):310–314, 2011. https://doi.org/10.3174/ajnr.A2301.

  16. 16.

    Huang, B., J. Chang, C. Wang, and V. Petrenko. A 1-D analysis of ejector performance. Int. J. Refrig. 22(5):354–364, 1999.

  17. 17.

    Kaye, D. M., D. Stub, V. Mak, T. Doan, and S. J. Duffy. Reducing iodinated contrast volume by manipulating injection pressure during coronary angiography. Catheter. Cardiovasc. Interv. 83(5):741–745, 2014. https://doi.org/10.1002/ccd.25348.

  18. 18.

    Keenan, J. H., E. P. Neumann, and F. Lustwerk. An investigation of ejector design by analysis and experiment. Cambridge, MA: Massachusetts Institute of Technology, Guided Missiles Program, 1948.

  19. 19.

    Kusumi, M., M. Yamada, T. Kitahara, M. Endo, S. Kan, H. Iida, et al. Rerupture of cerebral aneurysms during angiography–a retrospective study of 13 patients with subarachnoid hemorrhage. Acta Neurochir. (Wien) 147(8):831–837, 2005. https://doi.org/10.1007/s00701-005-0541-3.

  20. 20.

    Levin, D. C. Augmented arterial flow and pressure resulting from selective injections through catheters: clinical implications. Radiology 127(1):103–108, 1978. https://doi.org/10.1148/127.1.103.

  21. 21.

    Levin, D. C., D. A. Phillips, S. Lee-Son, and P. R. Maroko. Hemodynamic changes distal to selective arterial injections. Investig. Radiol. 12(2):116–120, 1977.

  22. 22.

    Lieber, B. B., C. Sadasivan, M. J. Gounis, J. Seong, L. Miskolczi, and A. K. Wakhloo. Functional angiography. Crit. Rev. Biomed. Eng. 33(1):1–102, 2005.

  23. 23.

    Lieber, B. B., C. Sadasivan, Q. Hao, J. Seong, and L. Cesar. The mixability of angiographic contrast with arterial blood. Med. Phys. 36(11):5064–5078, 2009. https://doi.org/10.1118/1.3243079.

  24. 24.

    Mabon, R. F., P. D. Soder, W. A. Carpenter, and D. P. Giddens. Fluid dynamics in cerebral angiography. Radiology 128(3):669–676, 1978. https://doi.org/10.1148/128.3.669.

  25. 25.

    Morris, T. W., M. Francis, and H. W. Fischer. A comparison of the cardiovascular responses to carotid injections of ionic and nonionic contrast media. Investig. Radiol. 14(3):217–223, 1979.

  26. 26.

    Morris, T. W., and C. S. Walike. An in vitro study of the hemodynamic effects of catheter injections. Investig. Radiol. 24(5):361–365, 1989.

  27. 27.

    Mulder, G., A. Bogaerds, P. Rongen, and F. van de Vosse. The influence of contrast agent injection on physiological flow in the circle of Willis. Med. Eng. Phys. 33(2):195–203, 2011.

  28. 28.

    Prasad, A., C. Ortiz-Lopez, D. M. Kaye, M. Byrne, S. Nanayakkara, S. H. Ahmed, et al. The use of the AVERT system to limit contrast volume administration during peripheral angiography and intervention. Catheter. Cardiovasc. Interv. 86(7):1228–1233, 2015. https://doi.org/10.1002/ccd.26155.

  29. 29.

    Razinsky, E., and J. Brighton. Confined jet mixing for nonseparating conditions. J. Basic Eng. 93(3):333–347, 1971.

  30. 30.

    Rosengarten, B., M. K. Steen-Muller, A. Muller, H. Traupe, R. K. Voss, and M. Kaps. Contrast media effect on cerebral blood flow regulation after performance of cerebral or coronary angiography. Cerebrovasc. Dis. 16(1):42–46, 2003.

  31. 31.

    Saitoh, H., K. Hayakawa, K. Nishimura, Y. Okuno, C. Murayama, T. Miyazawa, et al. Intracarotid blood pressure changes during contrast medium injection. AJNR Am. J. Neuroradiol. 17(1):51–54, 1996.

  32. 32.

    Saitoh, H., K. Hayakawa, K. Nishimura, Y. Okuno, T. Teraura, K. Yumitori, et al. Rerupture of cerebral aneurysms during angiography. Am. J. Neuroradiol. 16(3):539–542, 1995.

  33. 33.

    Sampei, T., N. Yasui, M. Mizuno, S. Nakajima, T. Ishikawa, H. Hadeishi, et al. Contrast medium extravasation during cerebral angiography for ruptured intracranial aneurysm; clinical analysis of 26 cases. Neurol. Med. Chir. 30(13):1011–1015, 1990. https://doi.org/10.2176/nmc.30.1011.

  34. 34.

    Shpilfoygel, S. D., R. A. Close, D. J. Valentino, and G. R. Duckwiler. X-ray videodensitometric methods for blood flow and velocity measurement: a critical review of literature. Med. Phys. 27(9):2008–2023, 2000. https://doi.org/10.1118/1.1288669.

  35. 35.

    Singh, G. Entrainment and mixing studies for a variable density confined jet. Numer. Heat Transf. Part A Appl. 35(2):205–224, 1999.

  36. 36.

    Skorczewski, T., L. C. Erickson, and A. L. Fogelson. Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations. Biophys. J. 104(8):1764–1772, 2013.

  37. 37.

    Stoel, M., J. Kandhai-Ragunath, G. Van Houwelingen, and C. Von Birgelen. Impact of dye injection on intracoronary pressure. EuroIntervention 5(2):272–276, 2009.

  38. 38.

    Sun, Q., A. Groth, and T. Aach. Comprehensive validation of computational fluid dynamics simulations of in vivo blood flow in patient-specific cerebral aneurysms. Med. Phys. 39(2):742–754, 2012. https://doi.org/10.1118/1.3675402.

  39. 39.

    Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 219(1137):186, 1953.

  40. 40.

    Vali, A., A. A. Abla, M. T. Lawton, D. Saloner, and V. L. Rayz. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries. J. Biomech. 50:195–201, 2017.

  41. 41.

    Waldenberger, P., A. Chemelli, and A. Mallouhi. Intra-arterial haemodynamic changes during cerebral three-dimensional rotational angiography. Eur. Radiol. 19(2):503–508, 2009. https://doi.org/10.1007/s00330-008-1161-0.

  42. 42.

    Wolf, G. L., D. D. Shaw, H. A. Baltaxe, K. Kilzer, and L. Kraft. A proposed mechanism for transient increases in arterial pressure and flow during angiographic injections. Investig. Radiol. 13(3):195–199, 1978.

  43. 43.

    Woodfield, P. L. , Nakabe, K., Suzuki, K. (eds.). Numerical computation on recirculation flow structures in co-axial confined laminar jets. In: 14th Symposium on Computational Fluid Dynamics 2000. Japan: Japanese Society of Fluid Mechanics.

  44. 44.

    Yamashita, K., K. Hayakawa, M. Tanaka, and J. Konishi. Cardiovascular responses following the intracarotid injections of ionic and nonionic contrast media compared with various mannitol solutions. Correl. Osmolality Investig. Radiol. 23(9):680–686, 1988.

  45. 45.

    Yousem, D. M., and B. C. Trinh. Injection rates for neuroangiography: results of a survey. AJNR Am. J. Neuroradiol. 22(10):1838–1840, 2001.

  46. 46.

    Yule, A., and M. Damou. Investigations of ducted jets. Exp. Therm Fluid Sci. 4(4):469–490, 1991.

  47. 47.

    Zaehringer, M., C. Wedekind, A. Gossmann, K. Krueger, G. Trenschel, and P. Landwehr. Aneurysmal re-rupture during selective cerebral angiography. Eur. Radiol. 12(Suppl 3):S18–S24, 2002. https://doi.org/10.1007/s00330-002-1460-9.

Download references

Conflict of interest

Author BK is partly employed by Vascular Simulations LLC. All other authors have stock ownership in Vascular Simulations LLC.

Human/animal studies

No human or animal studies were carried out by the authors for this article.

Author information

Correspondence to Chander Sadasivan.

Additional information

Associate Editor David Elad and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 201 kb)

Supplementary material 1 (AVI 201 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovarovic, B., Woo, H.H., Fiorella, D. et al. Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length. Cardiovasc Eng Tech 9, 226–239 (2018) doi:10.1007/s13239-018-0344-3

Download citation

Keywords

  • Reflux length
  • Efflux length
  • Craya–Curtet number
  • Pressure gradient
  • Reflux resistance
  • Logistic function