Cardiovascular Engineering and Technology

, Volume 5, Issue 4, pp 317–333 | Cite as

A Stent with Customizable Length for Treatment of Critical Limb Ischemia: Clinical Need, Device Development and Pre-clinical Testing

  • Barry O’BrienEmail author
  • Eoin O’Cearbhaill
  • Mark Bruzzi


Critical limb ischemia (CLI) is typically associated with a poor prognosis in the absence of a revascularization treatment. While surgical revascularization can be successful, there is an increasing desire for minimally invasive therapies, particularly in the more distal, infrapopliteal arteries. These small vessels contribute significantly to CLI, especially in diabetic CLI patients. This study describes a unique multi-segmented self-expanding stent developed specifically for use in infrapopliteal revascularization procedures. The number of segments deployed can be selected to optimize the stented length and location. The device may provide an adjunctive treatment in instances of sub-optimal balloon angioplasty when treating CLI. The clinical opportunity for the device is presented, followed by a description of the design and the design process. The results from a range of bench testing are presented as well as the findings of porcine studies to assess in vivo behaviour. In summary, while further development is needed, this study has demonstrated the feasibility of this novel device.


Self-expanding Infrapopliteal Angioplasty Multi-segmented Radial force Oversizing 



The authors wish to acknowledge the design and development activities of Mr. Brendan Casey and Mr. Ronan Keating. This work has been co-funded by Enterprise Ireland and the European Regional Development Fund (ERDF) through Proof of Concept grant PC-2008-012 and Technology Development grant CFTD-09-0139.

Conflict of interest

Barry O’Brien, Eoin O’Cearbhaill and Mark Bruzzi declare that they have no conflict of interest.

Human Studies

No human studies were carried out by the authors for this article.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Supplementary material

Supplementary material 1 (WMV 20778 kb)


  1. 1.
    Balar, N. N., R. Dodla, P. Oza, P. N. Patel, and M. Patel. Endovascular versus open revascularization for peripheral arterial disease. Endovasc. Today 8:61–64, 2011.Google Scholar
  2. 2.
    Barshes, N. R., and M. Belkin. A framework for the evaluation of the “value” and cost-effectiveness in the management of critical limb ischemia. J. Am. Coll. Surg. 213(4):552–566, 2011.CrossRefGoogle Scholar
  3. 3.
    Bernstein, O., and N. Chalmers. New treatments for infrapopliteal disease: devices, techniques, and outcomes so far. Cardiovasc. Interv. Radiol 35:715–724, 2012.CrossRefGoogle Scholar
  4. 4.
    Bosiers, M., K. Deloose, R. Moreialvar, J. Verbist, and P. Peeters. Current status of infrapopliteal stenting in patients with critical limb ischemia. J. Vasc. Bras. 7(3):248–255, 2008.CrossRefGoogle Scholar
  5. 5.
    Bradbury, A. W., C. V. Ruckley, F. G. R. Fowkes, J. F. Forbes, and I. Gillespie. Bypass versus angioplasty in severe ischemia of the leg (BASIL): multicentre, randomized controlled trial. Lancet 366(9501):1925–1934, 2005.CrossRefGoogle Scholar
  6. 6.
    Deloose, K., M. Bosiers, and P. Peeters. One year outcome after primary stenting of infrapopliteal lesions with the Chromis Deep stent in the management of critical limb ischemia. Eurointervention 5(3):318–324, 2009.CrossRefGoogle Scholar
  7. 7.
    Donas, K. P., G. Torsello, A. Schwindt, E. Schoenefeld, O. Boldt, and G. A. Pitoulias. Below knee bare nitinol stent placement in high-risk patients with critical limb ischemia is still durable after 24 months of follow-up. J. Vasc. Surg. 52:356–361, 2010.CrossRefGoogle Scholar
  8. 8.
    Faglia, E., M. Mantero, M. Caminiti, C. Caravaggi, R. De Giglio, C. Pritelli, G. Clerici, P. Fratino, P. De Cata, L. Dalla Paola, G. Mariani, M. Poli, P. G. Settembrini, L. Sciangula, A. Morabito, and L. Graziani. Extensive use of peripheral angioplasty, particularly infrapopliteal, in the treatment of ischaemic diabetic foot ulcers: clinical results of a multicentric study of 221 consecutive diabetic subjects. J. Intern. Med. 252:225–232, 2002.CrossRefGoogle Scholar
  9. 9.
    Falluji, N., and D. Mukherjee. Contemporary management of infrapopliteal peripheral arterial disease. Angiology 62(6):490–499, 2011.CrossRefGoogle Scholar
  10. 10.
    Frantzen J.J. Segmented Stent for Flexible Stent Delivery System. U.S. Patent No. 6,187,034. 13 Feb 2001.Google Scholar
  11. 11.
    Gates, J., and G. G. Hartnell. Optimized diagnostic angiography in high-risk patients with severe peripheral vascular disease. RadioGraphics 20:121–133, 2000.CrossRefGoogle Scholar
  12. 12.
    Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41(6):1206–1212, 2008.CrossRefGoogle Scholar
  13. 13.
    Graziani, L., A. Silvestro, V. Bertone, E. Manara, R. Andreini, A. Sigala, R. Mingardi, and R. De Giglio. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur. J. Vasc. Endovasc. Surg. 33:453–460, 2007.CrossRefGoogle Scholar
  14. 14.
    Hirsch, A. T., et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation 113:e463–e654, 2006.CrossRefGoogle Scholar
  15. 15.
    Hsiao, H. M., S. Prabhu, A. Nikanorov, and M. Razavi. Renal artery stent bending fatigue analysis. J. Med. Dev. Trans. ASME 1(2):113–118, 2007.CrossRefGoogle Scholar
  16. 16.
    Im, S., S.-W. Rha, B. G. Choi, S. E. Choi, Y. Park, A. R. Goud, et al. Comparison of 12-month clinical outcomes of infrapopliteal balloon angioplasty alone versus balloon angioplasty with provisional stenting in patients with critical limb ischemia. J. Am. Coll. Cardiol. 63:S32–S32, 2014.CrossRefGoogle Scholar
  17. 17.
    Karnabatidis, D., K. Katsanos, S. Spiliopoulos, A. Diamantopoulos, G. C. Kagadis, and D. Siablis. Incidence, anatomical location, and clinical significance of compressions and fractures in infrapopliteal balloon-expandable metal stents. J. Endovasc. Ther. 16:15–22, 2009.CrossRefGoogle Scholar
  18. 18.
    Kasiri, S., and D. J. Kelly. An argument for the use of multiple segment stents in curved arteries. J. Biomech. Eng. 133(8):084501, 2011.CrossRefGoogle Scholar
  19. 19.
    Krol, K. L. Coding for lower extremity vascularization in 2011. Endovasc. Today 5:81–89, 2011.Google Scholar
  20. 20.
    Liistro, F., I. Porto, P. Angioli, S. Grotti, L. Ricci, K. Ducci, G. Falsini, G. Ventoruzzo, F. Turini, G. Bellandi, and L. Bolognese. Drug-eluting balloon in peripheral intervention for below the knee angioplasty evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation 128(6):615–621, 2013.CrossRefGoogle Scholar
  21. 21.
    Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27(9):1988–2000, 2006.CrossRefGoogle Scholar
  22. 22.
    Neville, R. F., J. Steinberg, J. Babrowicz, J. Laredo, D. Deaton, and C. E. Attinger. A comparison of endovascular revascularization and bypass in regards to healing rayes of ischemic wounds. J. Vasc. Surg. 51(6):11s–12s, 2010.CrossRefGoogle Scholar
  23. 23.
    Ní Ghriallais, R., and M. Bruzzi. Self-expanding stent modelling and radial force accuracy. Comput. Methods Biomech. Biomed. Eng. 17(4):318–333, 2014.CrossRefGoogle Scholar
  24. 24.
    Norgren, L., W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris, and F. G. R. Fowkes. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur. J. Vasc. Endovasc. Surg. 33:S1–S75, 2007.CrossRefGoogle Scholar
  25. 25.
    Paley D. Principles of Deformity Correction. Berlin: Springer, 2002. ISBN 3-540-41665-X. p 287.Google Scholar
  26. 26.
    Rastogi, S., and S. W. Stavropoulos. Infrapopliteal angioplasty. Tech. Vasc. Interv. Radiol. 7(1):33–39, 2004.CrossRefGoogle Scholar
  27. 27.
    Rocha-Singh, K. J., M. Jaff, J. Joyce, J. Laird, G. Ansel, and P. Schneider. Major adverse limb events and wound healing following infrapopliteal artery stent implantation in patients with critical limb ischemia: the XCELL trial. Catheter. Cardiovasc. Interv. 80(6):1042–1051, 2012.CrossRefGoogle Scholar
  28. 28.
    Ryu, H. M., J. S. Kim, Y. G. Ko, M. K. Hong, Y. Jang, and D. Choi. Clinical outcomes of infrapopliteal angiography in patients with critical limb ischemia. Korean Circ. J. 42:259–265, 2012.CrossRefGoogle Scholar
  29. 29.
    Saguner, A. M., T. Traupe, L. Raeber, N. Hess, Y. Banz, A. R. Saguner, N. Diehm, and O. M. Hess. Oversizing and restenosis with self-expanding stents in iliofemoral arteries. Cardiovasc. Interv. Radiol. 35:906–913, 2012.CrossRefGoogle Scholar
  30. 30.
    Schmidt, A., M. Piorkowski, M. Werner, M. Ulrich, Y. Bausback, S. Braunlich, H. Ick, J. Schuster, S. Botsios, H. J. Kruse, R. L. Varcoe, and D. Scheinert. First experience with drug-eluting balloons in infrapopliteal arteries: restenosis rate and clinical outcome. J. Am. Coll. Cardiol. 58:1105–1109, 2011.CrossRefGoogle Scholar
  31. 31.
    Selvarasu, N. K. C., D. K. Tafti, and P. P. Vlachos. Hydrodynamic effects of compliance mismatch in stented arteries. J. Biomech. Eng. 133(2):021008, 2011.CrossRefGoogle Scholar
  32. 32.
    Siablis, D., D. Karnabatidis, K. Katsanos, A. Diamantopoulos, S. Spiliopoulos, G. C. Kagadis, and J. Tsolakis. Infrapopliteal application of sirolimus-eluting versus bare metal stents for critical limb ischemia: analysis of long-term angiographic and clinical outcome. J. Vasc. Interv. Radiol. 20:1141–1150, 2009.CrossRefGoogle Scholar
  33. 33.
    Singh, K. P., and A. M. Sharma. Critical limb ischemia: current approach and future directions. J. Cardiovasc. Trans. Res. 7:437–445, 2014.CrossRefGoogle Scholar
  34. 34.
    Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.CrossRefGoogle Scholar
  35. 35.
    Yang, X., X. Lu, K. Ye, X. Li, J. Qin, and M. Jiang. Systematic review and meta-analysis of balloon angioplasty versus primary stenting in the infrapopliteal disease. Vasc. Endovasc. Surg. 48:18–26, 2014.CrossRefGoogle Scholar
  36. 36.
    Zahedmanesh, H., and C. Lally. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med. Biol. Eng. Comput. 47(4):385–393, 2009.CrossRefGoogle Scholar
  37. 37.
    Zhao, H. Q., A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L. B. Schwartz. Late stent expansion and neointimal proliferation of oversized nitinol stents in peripheral arteries. Cardiovasc. Interv. Radiol. 32:720–726, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Barry O’Brien
    • 1
    Email author
  • Eoin O’Cearbhaill
    • 1
    • 2
  • Mark Bruzzi
    • 1
  1. 1.Biomedical Engineering, College of Engineering and InformaticsNational University of Ireland GalwayGalwayIreland
  2. 2.School of Mechanical & Materials EngineeringUniversity College DublinDublinIreland

Personalised recommendations