Advertisement

The Nucleus

pp 1–15 | Cite as

Toxicity assessment of magnesium oxide nano and microparticles on cancer and non-cancer cell lines

  • Bhanuramya Mangalampalli
  • Naresh Dumala
  • Paramjit GroverEmail author
Original Article
  • 13 Downloads

Abstract

Testing of magnesium oxide nanoparticles (MgO NPs) on established cell lines at cellular levels using toxicological endpoints provide valuable information about their adverse effects upon exposure. In vitro toxicity assessment of MgO NPs and their microparticles was carried out at 50, 100, 200 and 400 µg/mL concentrations by using cytotoxicity, genotoxicity, oxidative stress, cellular apoptosis and cellular uptake studies in cancer (HepG2) and non-cancer (NRK 49F) cell lines after 24 h of treatment. IC50 concentration for MgO NPs was found to be > 400 µg/mL in both cell lines after 24 h treatment. A concentration dependent toxicity was noted in genotoxic studies and oxidative stress parameters. A significant increase in the comet tail DNA was recorded at 200 and 400 µg/mL concentrations of MgO NPs when compared with controls in HepG2 and NRK 49F cells. Exposure to MgO NPs led to an increase in the generation of reactive oxygen species (ROS) in both the cell types. Genotoxicity results were further supported by apoptotic analysis. MgO particles were found adhered to the cell membrane when assayed by ICP-OES. The results of this study showed that the MgO NPs were toxic at high concentrations only. Furthermore, MgO NPs are more toxic to cancerous cells compared to non-cancerous cells. ROS mediated genotoxicity was observed when treated with MgO NPs. The current study adds to the information on MgO particles. The results of this investigation may help in advancement of understanding of toxicological nature of MgO NPs and aid in their use.

Keywords

Nanoparticles Microparticles Hepatic cell line (HepG2) Kidney cell line (NRK 47F) Cell morphology Cytotoxicity Genotoxicity Oxidative stress Apoptosis ICPOES analysis 

Notes

Acknowledgements

We express our sincere thanks to the Director, IICT Hyderabad for providing facility to execute this study. Further, Bhanuramya M (SRF) and Naresh D (SRF), Paramjit G (Emeritus Scientist) is grateful to University Grants Commission and Council of Scientific and Industrial Research, India, respectively for the award of fellowship.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest related to this research.

References

  1. 1.
    Abudayyak M, Altincekic Gurkaynak T, Ozhan G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biol Trace Elem Res. 2017;175:458–65.CrossRefGoogle Scholar
  2. 2.
    Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.CrossRefGoogle Scholar
  3. 3.
    Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R, Odnevall Wallinder I, Hendriks G, Karlsson HL. Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. Environ Mol Mutagen. 2018;59:211–22.CrossRefGoogle Scholar
  4. 4.
    Ali D, Ali H, Alarifi S, Masih AP, Manohardas S, Hussain SA. Eco-toxic efficacy of nano-sized magnesium oxide in freshwater snail Radix lueteola L. Fresenius Environ Bull. 2016;25(4):1234–42.Google Scholar
  5. 5.
    Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol. 2017;12:115–8.CrossRefGoogle Scholar
  6. 6.
    Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G. Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir. 2009;25(10):5647–54.CrossRefGoogle Scholar
  7. 7.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefGoogle Scholar
  8. 8.
    Cai X, Shi L, Sun W, Zhao H, Li H, He H, Lan M. A facile way to fabricate manganese phosphate self-assembled carbon networks as efficient electrochemical catalysts for real-time monitoring of superoxide anions released from HepG2 cells. Biosens Bioelectron. 2018;102:171–8.CrossRefGoogle Scholar
  9. 9.
    Cao Y, Gong Y, Liao W, Luo Y, Wu C, Wang M, Yang Q. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals. 2018;31:457–76.CrossRefGoogle Scholar
  10. 10.
    Chinde S, Poornachandra Y, Panyala A, Kumari SI, Yerramsetty S, Adicherla H, Grover P. Comparative study of cyto- and genotoxic potential with mechanistic insights of tungsten oxide nano- and microparticles in lung carcinoma cells. J Appl Toxicol. 2018;38:896–913.CrossRefGoogle Scholar
  11. 11.
    Crowley LC, Marfell BJ, Waterhouse NJ. Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb Protoc. 2016;9:pdb-rot087205.CrossRefGoogle Scholar
  12. 12.
    Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53.CrossRefGoogle Scholar
  13. 13.
    Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.CrossRefGoogle Scholar
  14. 14.
    El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol. 2009.  https://doi.org/10.1155/2009/754810.Google Scholar
  15. 15.
    Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.CrossRefGoogle Scholar
  16. 16.
    Enciso JM, Gutzkow KB, Brunborg G, Olsen AK, López de Cerain A, Azqueta A. Standardisation of the in vitro comet assay: influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis. 2018;33:25–30.CrossRefGoogle Scholar
  17. 17.
    Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47:326–32.CrossRefGoogle Scholar
  18. 18.
    Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85:743–50.CrossRefGoogle Scholar
  19. 19.
    Ghobadian M, Nabiuni M, Parivar K, Fathi M, Pazooki J. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). Ecotoxicol Environ Saf. 2015;122:260–7.CrossRefGoogle Scholar
  20. 20.
    Hackley VA, Clogston JD. Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering. In: McNeil S, editors. Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology (Methods and Protocols) 2011, vol 697, (pp. 35–52). Humana Press.Google Scholar
  21. 21.
    Hickey DJ, Muthusamy D, Webster TJ. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications. J Biomed Mater Res A. 2017;105:3136–47.CrossRefGoogle Scholar
  22. 22.
    Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret JM, Baeza-Squiban A, Boland S. Intracellular signal modulation by nanomaterials. In: Nanomaterial. Dordrecht: Springer; 2014. p. 111–134Google Scholar
  23. 23.
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19(7):975–83.CrossRefGoogle Scholar
  24. 24.
    Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–50.CrossRefGoogle Scholar
  25. 25.
    Kansara K, Patel P, Shah D, Shukla RK, Singh S, Kumar A, Dhawan A. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen. 2015;56(2):204–17.CrossRefGoogle Scholar
  26. 26.
    Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett. 2009;188:112–8.CrossRefGoogle Scholar
  27. 27.
    Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2017.  https://doi.org/10.1016/j.arabjc.2017.05.011
  28. 28.
    Khanna P, Ong C, Bay B, Baeg G. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015;5:1163–80.CrossRefGoogle Scholar
  29. 29.
    Kim S, Ryu D-Y. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol. 2013;33:78–89.CrossRefGoogle Scholar
  30. 30.
    Kononenko V, Repar N, Marušič N, Drašler B, Romih T, Hočevar S, Drobne D. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: size matters. Toxicol In Vitro. 2017;40:256–63.CrossRefGoogle Scholar
  31. 31.
    Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem. 2012;22:24610–7.CrossRefGoogle Scholar
  32. 32.
    Kumaran R, Choi YK, Singh V, Song HJ, Song KG, Kim K, Kim H. In vitro cytotoxic evaluation of MgO nanoparticles and their effect on the expression of ROS genes. Int J Mol Sci. 2015;16(4):7551–64.CrossRefGoogle Scholar
  33. 33.
    Kumari M, Singh SP, Chinde S, Rahman MF, Mahboob M, Grover P. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. Int J Toxicol. 2014;33(2):86–97.CrossRefGoogle Scholar
  34. 34.
    Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak D, Ahn K. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol. 2013;10:36.CrossRefGoogle Scholar
  35. 35.
    Mahmoud A, Ezgi Ö, Merve A, Özhan G. In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. Int J Toxicol. 2016;35:429–37.CrossRefGoogle Scholar
  36. 36.
    Mangalampalli B, Dumala N, Grover P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul Toxicol Pharmacol. 2017;90:170–84.CrossRefGoogle Scholar
  37. 37.
    Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013; 942916.CrossRefGoogle Scholar
  38. 38.
    Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.CrossRefGoogle Scholar
  39. 39.
    Martínez E, Engel E, Planell JA, Samitier J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann Anat. 2009;191:126–35.CrossRefGoogle Scholar
  40. 40.
    Martinez-Boubeta C, Balcells L, Cristòfol R, Sanfeliu C, Rodríguez E, Weissleder R, Lope-Piedrafita S, Simeonidis K, Angelakeris M, Sandiumenge F, Calleja A. Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomed Nanotechnol Biol Med. 2010;6(2):362–70.CrossRefGoogle Scholar
  41. 41.
    Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol. 2015;35:581–92.CrossRefGoogle Scholar
  42. 42.
    Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101:239–53.CrossRefGoogle Scholar
  43. 43.
    Namvar F, Rahman HS, Mohamad R, Rasedee A, Yeap SK, Chartrand MS, Azizi S, Tahir PM. Apoptosis induction in human leukemia cell lines by gold nanoparticles synthesized using the green biosynthetic approach. J Nanomater. 2015;16(1):330.Google Scholar
  44. 44.
    Nootarki ZS, Kesmati M, Borujeni MP. Effect of magnesium oxide nanoparticles on atropine-induced memory impairment in adult male mice. Avicenna J Neuro Psych Physiol. 2015;2(4):e36924.Google Scholar
  45. 45.
    OECD Test No. 487: in vitro mammalian cell micronucleus test. 2016.Google Scholar
  46. 46.
    Paluri SL, Ryan JD, Lam NH, Nepal D, Sizemore IE. Analytical-based methodologies for examining the in vitro absorption, distribution, metabolism, and elimination (ADME) of silver nanoparticles. Small. 2017;13(23):1603093.CrossRefGoogle Scholar
  47. 47.
    Patel MK, Ali MA, Srivastava S, Agrawal VV, Ansari SG, Malhotra BD. Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application. Biosens Bioelectron. 2013;50:406–13.CrossRefGoogle Scholar
  48. 48.
    Patel MK, Zafaryab M, Rizvi M, Agrawal VV, Ansari ZA, Malhotra BD, Ansari SG. Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. J Nanoeng Nanomanuf. 2013;3(2):162–6.CrossRefGoogle Scholar
  49. 49.
    Patel S, Patel P, Bakshi SR. Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology. 2017;69:245–63.CrossRefGoogle Scholar
  50. 50.
    Perreault F, Melegari SP, da Costa CH, Rossetto AL, Popovic R, Matias WG. Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ. 2012;441:117–24.CrossRefGoogle Scholar
  51. 51.
    Pietroiusti A, Magrini A. Engineered nanoparticles at the workplace: current knowledge about workers’ risk. Occup Med (Lond). 2015;65:171–3.CrossRefGoogle Scholar
  52. 52.
    Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013; 956792.CrossRefGoogle Scholar
  53. 53.
    Royall JA, Ischiropoulos H. Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys. 1993;302:348–55.CrossRefGoogle Scholar
  54. 54.
    Sahu SC, Zheng J, Yourick JJ, Sprando RL, Gao X. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. J Appl Toxicol. 2015;35:1160–8.CrossRefGoogle Scholar
  55. 55.
    Salla S, Sunkara R, Ogutu S, Walker LT, Verghese M. Antioxidant activity of papaya seed extracts against H2O2 induced oxidative stress in HepG2 cells. LWT Food Sci Technol. 2016;66:293–7.CrossRefGoogle Scholar
  56. 56.
    Schieber M, Chandel NS. ROS function in redoz signaling and oxidative stress. Curr Biol. 2014;24:R453–62.CrossRefGoogle Scholar
  57. 57.
    Schneider T, Westermann M, Glei M. In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch Toxicol. 2017;91:3517–27.CrossRefGoogle Scholar
  58. 58.
    Senapati VA, Kumar A, Gupta GS, Pandey AK, Dhawan A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: a mechanistic approach. Food Chem Toxicol. 2015;85:61–70.CrossRefGoogle Scholar
  59. 59.
    Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:1–11.CrossRefGoogle Scholar
  60. 60.
    Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012;17:852–70.CrossRefGoogle Scholar
  61. 61.
    Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A. TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology. 2013;7(1):48–60.CrossRefGoogle Scholar
  62. 62.
    Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol. 2013;33:1165–79.CrossRefGoogle Scholar
  63. 63.
    Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 1997;21(1):A-3B.Google Scholar
  64. 64.
    Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol Toxicol. 2011;27:333–42.CrossRefGoogle Scholar
  65. 65.
    Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone–soft tissue engineering applications: in vitro and in vivo evaluation. Biomed Mater. 2017;12(5):055011.CrossRefGoogle Scholar
  66. 66.
    Swaroop C, Shukla M. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol. 2018;113:729–36.CrossRefGoogle Scholar
  67. 67.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206–21.CrossRefGoogle Scholar
  68. 68.
    Turkez H, Yousef MI, Sönmez E, Togar B, Bakan F, Sozio P, Stefano AD. Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells. J Appl Toxicol. 2014;34:373–9.CrossRefGoogle Scholar
  69. 69.
    van der Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, Antunes Fernandes EC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology. 2016;10(10):1431–41.CrossRefGoogle Scholar
  70. 70.
    Vrbova M, Dastychova E, Rousar T. Renal cell lines for study of nephrotoxicity in vitro. Mil Med Sci Lett. 2016;85(2):69–74.CrossRefGoogle Scholar
  71. 71.
    Xie J, Huang J, Li X, Sun S, Chen X. Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem. 2009;16:1278–94.CrossRefGoogle Scholar
  72. 72.
    Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol. 2016;36:352–60.CrossRefGoogle Scholar
  73. 73.
    Yan Z, Taylor MG, Mascareno A, Mpourmpakis G. Size-, shape-, and composition-dependent model for metal nanoparticle stability prediction. Nano Lett. 2018;18:2696–704.CrossRefGoogle Scholar
  74. 74.
    Zeb A, Ullah F. A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. J Anal Methods Chem. 2016.  https://doi.org/10.1155/2016/9412767.Google Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2019

Authors and Affiliations

  • Bhanuramya Mangalampalli
    • 1
    • 2
  • Naresh Dumala
    • 1
    • 2
  • Paramjit Grover
    • 1
    Email author
  1. 1.Toxicology Lab, Applied Biology DepartmentCouncil of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Technology (IICT)HyderabadIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations