Advertisement

The Nucleus

pp 1–4 | Cite as

A report of aneuploidy and cytomixis in rare and endemic species of central India: Cyathocline lutea Law ex Wight

  • Nasir Aziz WagayEmail author
  • Nissar Ahmad Khan
  • Shah Rafiq
  • Pankaj Pulate
Report

Abstract

Cytological analysis of rare and endemic species Cyathocline lutea Law ex Wight (Asteraceae) of Maharashtra, India have been reported in the present study. This is the first aneuploid report for this species revealing chromosome count of n = 9. Meiotic irregularity like cytomixis has been observed for the first time in this species resulting in the formation of hypoploid and hyperploid PMCs which in turn resulted in two types of pollens. The frequency of cytomixis in PMCs was calculated as 10.55%. Pollen grain study revealed some small sterile unstained pollen (12.35%) and large fertile stained pollen (87.64%). The size of fertile pollen grains was 21.02–33.83 × 20.92–24.39 µm while sterile pollens were 18.04–24.53 × 16.85–20.48 µm.

Keywords

Aneuploid Cytomixis Cyathocline lutea 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests to any person, agency or institution.

References

  1. 1.
    Almeida MR. Flora of Maharashtra, vol. IIIB. Mumbai: Orient Press; 2001.Google Scholar
  2. 2.
    Bedi YS. Cytomixis in woody species. Proc Indian Natl Sci Acad Plant Sci. 1990;100B:233–8.Google Scholar
  3. 3.
    Bellucci M, Roscini C, Mariani A. Cytomixis in Pollen mother cells of Medicago sativa L. J Hered. 2003;94:512–6.CrossRefGoogle Scholar
  4. 4.
    Bell CR. Cytomixis in Tauschia nudicaulis Schlecht (Apiaceae). Cytologia. 1964;29:369–98.CrossRefGoogle Scholar
  5. 5.
    Boldrini KR, Pagliarini MS. Cell fusion and cytomixis during microsporogenesis in Brachiaria humidicola (Poaceae). S Afr J Bot. 2006;72:478–81.CrossRefGoogle Scholar
  6. 6.
    Falistocco E, Tosti N, Falcinelli M. Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. Cytologia. 1995;86:444–53.Google Scholar
  7. 7.
    Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R. Horizontal genome transfer as an asexual path to the formation of new species. Nature. 2014;511:232–5.CrossRefGoogle Scholar
  8. 8.
    Gates RR. Pollen formation in Oenothera gigas. Ann Bot. 1911;25:909–40.CrossRefGoogle Scholar
  9. 9.
    Hamant O, Ma H, Cande WZ. Genetics of meiotic prophase I in plants. Annu Rev Plant Biol. 2006;57:267–302.CrossRefGoogle Scholar
  10. 10.
    Heslop-Harrison J, Heslop-Harrison Y, Shivanna KR. The evaluation of pollen quality and a further appraisal of the fluorochromatic (FCR) test procedure. Theor Appl Genet. 1984;67:367–75.CrossRefGoogle Scholar
  11. 11.
    Kalinka A, Achrem M, Rogalska SM. Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids. Nucleus. 2010;53:69–83.CrossRefGoogle Scholar
  12. 12.
    Kornicke M. Uber ortsveranderung von Zellkarnern SB. Niederhein Ges Natur-U Heilkunde. 1901. pp. 14–25.Google Scholar
  13. 13.
    Kumar V, Subramaniam B. Chromosome atlas of flowering plants of the Indian subcontinent. Vol. 1, Dicotyledons. Botanical Survey of India, Calcutta: 1987Google Scholar
  14. 14.
    Kumar P, Singhal VK, Srivastava SK. First detection of cytomixis and its consequences in Thalictrum cultratum Wall. (Ranunculaceae). Cytol Genet. 2017;51:384–90.CrossRefGoogle Scholar
  15. 15.
    Lattoo SK, Khan S, Bamotra S, Dhar AK. Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq.- an additional strategy and possible implications. J Biosci. 2006;31:629–37.CrossRefGoogle Scholar
  16. 16.
    Mason AS, Nelson MN, Castello MC, Yan G, Cowling WA. Genotypic effects on the frequency of homoeologous and homologous recombination in Brassica napus × B. carinata hybrids. Theor Appl Genet. 2011;122:543–53.CrossRefGoogle Scholar
  17. 17.
    Mishra DK, Singh NP. Endemic and threatened flowering plants of Maharashtra. Calcutta: Botanical Survey of India; 2001. p. 196–7.Google Scholar
  18. 18.
    Mursalimov S, Sidorchuk Y, Deineko E. The role of spherosome-like vesicles information of cytomictic channels between tobacco microsporocytes. Biol Plant. 2013;57:291–7.CrossRefGoogle Scholar
  19. 19.
    Mursalimov S, Deineko E. Cytomixis in plants: facts and doubts. Protoplasma. 2017;255:719–31.CrossRefGoogle Scholar
  20. 20.
    Pawar SM, Sonawane SR. Angiosperm Diversity of KAS reservoir from Satara district [Maharashtra], India. World J Biol Res. 2012;5:74–80.Google Scholar
  21. 21.
    Pecrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J Exp Bot. 2011;62:3587–97.CrossRefGoogle Scholar
  22. 22.
    Singhal VK, Kumar P. Impact of cytomixis on the meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Mecanopsis aculeate Royle). J Biosci. 2008;33:371–80.CrossRefGoogle Scholar
  23. 23.
    Sidorchuk YV, Deineko EV, Shumny VK. Peculiarities of cytomixis in pollen mother cells of transgenic tobacco plants (Nicotiana tabacum L.) with mutant phenotype. Cell Tiss. Biol. 2007;1:570–6.CrossRefGoogle Scholar
  24. 24.
    Subramanyam B. Kamble. In: Löve Áskell. IOPB chromosome number reports XXXI. Taxon. 1971; 20: 157–160.Google Scholar
  25. 25.
    Zhou SQ. Viewing the difference between the diploid and the polyploidy in the light of the upland cotton aneuploid. Hereditas. 2003;138:65–72.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2019

Authors and Affiliations

  1. 1.Botany Research LaboratoryVidyabharati Mahavidyalya CollegeAmravatiIndia
  2. 2.Department of BotanyPunjabi UniversityPatialaIndia
  3. 3.Plant Tissue Culture Laboratory, Department of BotanyUniversity of KashmirSrinagarIndia
  4. 4.Department of BotanyGovernment Degree College DodaDodaIndia

Personalised recommendations