The Nucleus

pp 1–5 | Cite as

Cytotoxicity and genotoxicity of silver nanoparticles in Chinese Hamster ovary cell line (CHO-K1) cells

  • Masoumeh Heshmati
  • Sepideh Arbabi BidgoliEmail author
  • Samideh Khoei
  • Aziz Mahmoudzadeh
  • Seyed Mehdi Rezayat Sorkhabadi
Original Article


Biomedical and pharmaceutical products comprising silver nanoparticles are attracting interest due to their potent antibacterial activities. For their safe use it has become imperative to test their cyto-genotoxic potential. In the present study the cytotoxicity and genotoxicity of three different sizes of AgNPs ranging from 15 to 22 nm and at concentrations 0.005–500 μg/ml were studied in Chinese Hamster ovary cell line (CHO-K1) cells. Cytoxicity was assessed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and for genotoxicity comet, and micronucleus assays were utilized. AgNPs were able to internalize CHO-K1 cells and cause cytotoxicity at concentrations 0.005–500 μg/ml. AgNP‐induced cyto-genotoxicity in CHO-K1 cells could be attributed to its smaller primary size. AgNP-C of size ~ 15 nm was the most potent among the three AgNPs. The genotoxic response was biphasic that increased at lower concentrations (0.005–0.025 μg/ml) and decreased at higher concentrations (0.05–0.1 μg/ml) after 24 h of exposure. Such potential in vitro genotoxic effect of AgNPs remains to be further confirmed in animal cells in vivo.


Silver nano particles DNA damage Micronuclei Cytotoxicity Cellular uptake 



Authors are thankful from Iran Nano Initiative Council (INIC) (Grant No. 1188) for financial support of present study.


  1. 1.
    Ahmed LB, Milić M, Pongrac IM, Marjanović AM, Mlinarić H, Pavičić I, Gajović S, Vrček IV. Impact of surface funtionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells. Food Chem Toxicol. 2017;107:349–61.CrossRefGoogle Scholar
  2. 2.
    Asharani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279–90.CrossRefGoogle Scholar
  3. 3.
    Asharani PV, Mun GLK, Hande MP, Valiyaveettil S. Antiproliferative activity of silver nanoparticles. BMC Cell Biol. 2009;10:1–14.CrossRefGoogle Scholar
  4. 4.
    Cvjetko P, Milošić A, Domijan AM, Vinković Vrček I, Tolić S, Peharec Štefanić P, Letofsky-Papst I, Tkalec M, Balen B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf. 2017;137:18–28.CrossRefGoogle Scholar
  5. 5.
    Evans SJ, Clift MJD, Singh N, Wills JW, Hondow N, Wilkinson TS, Burgum MJ, Brown AP, Jenkins GJ, Doak SH. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part Fibre Toxicol. 2019;16:2–14.CrossRefGoogle Scholar
  6. 6.
    Fenech M. The in vitro micronucleus technique. Mutat Res Fundam Mol Mech Mutagen. 2000;455:81–95.CrossRefGoogle Scholar
  7. 7.
    Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2010;85:743–50.CrossRefGoogle Scholar
  8. 8.
    Gorth DJ, Rand DM, Webster TJ. Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomed. 2011;6:343–50.Google Scholar
  9. 9.
    Harvanova MP, Jiravova J, Malohlava J, Tomankova KB, Jirova D, Kolarova H. Raman imaging of cellular uptake and studies of silver nanoparticles effect in BJ human fibroblasts cell lines. Int J Pharm. 2017;528:280–6.CrossRefGoogle Scholar
  10. 10.
    Heshmati M, Arbabi Bidgoli S, Khoei S, Rezayat SM, Parivar K. Mutagenic effects of nanosilver consumer products: a new approach to physicochemical properties. Iran J Pharm Res. 2015;14:1171–80.Google Scholar
  11. 11.
    Jiang X, Foldbjerg R, Miclaus T, Wang L, Singh R, Hayashi Y, Sutherland D, Chen C, Autrup H, Beer C. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHOK1. Toxicol Lett. 2013;222:55–63.CrossRefGoogle Scholar
  12. 12.
    Jimenez-Lamana J, Laborda F, Bolea E, Abad-Alvaro I, Castillo JR, Bianga J. An insight into silver nanoparticles bioavailability in rats. Metallomics Integr Biometal Sci. 2014;6:2242–9.CrossRefGoogle Scholar
  13. 13.
    Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40:328–43636.CrossRefGoogle Scholar
  14. 14.
    Lee HJ, Yeo SY, Jeong SH. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci. 2003;38:199–204.Google Scholar
  15. 15.
    Lim HK, Asharani PV, Hande MP. Enhanced genotoxicity of silver nanoparticles in DNA repair deficient mammalian cells. Front Genet. 2012;3:1–13.CrossRefGoogle Scholar
  16. 16.
    Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010;4:319–30.CrossRefGoogle Scholar
  17. 17.
    Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol. 2015;35:581–92.CrossRefGoogle Scholar
  18. 18.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefGoogle Scholar
  19. 19.
    Olive PL. The comet assay. In: Didenko VV, editor. In situ detection of DNA damage. Totowa: Humana Press; 2002. p. 179–194.CrossRefGoogle Scholar
  20. 20.
    Park EJ, Yi J, Kim Y, Choi K, Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro. 2010;24:872–8.CrossRefGoogle Scholar
  21. 21.
    Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32:9810–7.CrossRefGoogle Scholar
  22. 22.
    Pongrac IM, Ahmed LB, Mlinarić H, Jurašin DD, Pavičić I, Marjanović Čermak AM, Milić M, Gajović S, Vinković Vrček I. Surface coating affects uptake of silver nanoparticles in neural stem cells. J Trace Elem Med Biol. 2018;50:684–92.CrossRefGoogle Scholar
  23. 23.
    Raesian A, Arbabi Bidgoli S, Sorkhabadi R, Mahdi S. Dermal toxicity of colloidal nanosilver in albino rabbit: a new approach to physicochemical properties. Nanomed Res J. 2017;2:142–9.Google Scholar
  24. 24.
    Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M. Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis. 2014;30:59–66.CrossRefGoogle Scholar
  25. 25.
    Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:1–11.CrossRefGoogle Scholar
  26. 26.
    Souza TA, Franchi LP, Rosa LR, da Veiga MA, Takahashi CS. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen. 2016;1:70–83.CrossRefGoogle Scholar
  27. 27.
    Strużyńska L, Skalska J. Mechanisms underlying neurotoxicity of silver nanoparticles. Adv Exp Med Biol. 2018;1048:227–50.CrossRefGoogle Scholar
  28. 28.
    Xin L, Wang J, Fan G, Che B, Wu Y, Guo S, Tong J. Oxidative stress and mitochondrial injury-mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Environ Toxicol. 2016;1:1691–9.CrossRefGoogle Scholar
  29. 29.
    Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21:419–24.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2019

Authors and Affiliations

  • Masoumeh Heshmati
    • 1
    • 2
  • Sepideh Arbabi Bidgoli
    • 3
    Email author
  • Samideh Khoei
    • 4
  • Aziz Mahmoudzadeh
    • 5
  • Seyed Mehdi Rezayat Sorkhabadi
    • 6
  1. 1.Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
  2. 2.Pharmaceutical Sciences Research CenterPharmaceutical Sciences Branch, Islamic Azad University (IAUPS)TehranIran
  3. 3.Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical SciencesIslamic Azad UniversityTehranIran
  4. 4.Medical Physics Department, School of MedicineIran University of Medical SciencesTehranIran
  5. 5.Novin Medical Radiation InstituteTehranIran
  6. 6.Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations