The Nucleus

, Volume 62, Issue 2, pp 143–154 | Cite as

Cancer immunotherapy: present scenarios and the future of immunotherapy

  • Dwaipayan Chakraborty
  • Subhadip Pati
  • Sayantan Bose
  • Subhanki Dhar
  • Saikat Dutta
  • Gaurisankar SaEmail author
Review Article


One of the major emerging modes of treatment for cancer patients in the current healthcare systems has been immunotherapy. Various approaches of immunotherapy have been proved to be useful against tumor progression in laboratory settings. Few have also been showing promising results in clinical trials. However, many clinical trials have also pointed out the adverse side effects of immunotherapy on tumor patients. In this context, we discuss about the success and failures of the present modes of immunotherapy available to patients and also about the emerging target points that are coming up and may be crucial in the success of future immunotherapy. The upcoming researches involving new players in the immunotherapy arena like Breg and Treg and how combinatorial therapies will be needed to counter the side effects that are exhibited by the present techniques of immunotherapy have been discussed in the review. This review will provide a broad picture of the current scenario of cutting edge immunotherapy and the newer methods that can be utilized to prevent the failures and ensure success in future clinical trials involving immunotherapy.


Cancer immunotherapy T regulatory cell B regulatory cell CAR T cells Immunoediting 



This work was supported by research grants from Department of Science and Technology, Govt. of India, University Grants Commission and Council of Scientific and Industrial Research, India.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res. 2008;14:5220–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Antonia SJ, Gettinger SN, Chow LQM, Juergens RA, Borghaei H, Shen Y. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-lineNSCLC: interim phase I results. J Clin Oncol. 2014;32:74–86.Google Scholar
  3. 3.
    Au KM, Tripathy A, Lin CP. Bespoke pre targeted nanoradioimmunotherapy for the treatment of non-hodgkin lymphoma. ACS Nano. 2018;83:48–59.Google Scholar
  4. 4.
    Bates SE, Berry DA, Balasubramaniam S, Bailey S, LoRusso PM, Rubin EH. Advancing clinical trials to streamline drug development. Clin Cancer Res. 2015;21(20):4527–35.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Beier U, et al. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J. 2015;29:2315–26.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Berthelot J-M. Regulatory B cells play a key role in immune system balance. Jt Bone Spine Rev Rhum. 2013;80(1):18–22.CrossRefGoogle Scholar
  7. 7.
    Bodogai M, Lee Chang C, Wejksza K. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Res. 2013;73(7):2127–38.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bose S, Panda AK, Mukherjee S, Sa G. Curcumin and tumor immune-editing: resurrecting the immune system. Cell Div. 2015;10:6–30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carmi Y. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99–104.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chakraborty S, Panda AK, Bose S, Roy D, Kajal K, Guha D, Sa G. Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Sci Rep. 2017;7:1628–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines. 2016;4:28–31.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol. 2015;15(8):1145–54.CrossRefGoogle Scholar
  13. 13.
    Chong MM, Rasmussen JP, Rudensky AY, Littman DR. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med. 2008;205(9):2005–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M. A role for Dicer in immune regulation. J Exp Med. 2006;203:2519–27.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Coronella-Wood JA, Hersh EM. Naturally occurring B-cell responses to breast cancer. Cancer Immunol Immunother. 2003;52:715–38.CrossRefPubMedGoogle Scholar
  16. 16.
    Curiel TJ, Coukos G, Zou L. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Investig. 2007;117:1167–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Dambuza IM. IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat Commun. 2017;8(1):719–29.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dong H, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:1039.CrossRefGoogle Scholar
  20. 20.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.CrossRefPubMedGoogle Scholar
  21. 21.
    Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Emens LA, Butterfield LH, Hodi FS Jr, Marincola FM, Kaufman HL. Cancerimmunotherapy trials: leading a paradigm shift in drug development. J Immunother Cancer. 2016;4:42–51.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fanoni D. New monoclonal antibodies against B-cell antigens: possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol Lett. 2011;134:157–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Frezza C, Mauro C. Editorial: the metabolic challenges of immune cells in health and disease. Front Immunol. 2015;6:293.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gerriets VA, Danzaki K, Kishton RJ, Eisner W, Nichols AG, Saucillo DC, Shinohara ML, MacIver NJ. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur J Immunol. 2016;46(8):1970–83.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Girardin A, McCall J, Black MA, Edwards F, Phillips V, Taylor ES, et al. Inflammatory and regulatory T cells contribute to a unique immune microenvironment in tumor tissue of colorectal cancer patients. Int J Cancer. 2013;132:1842–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, Biota C, Doffin AC, Durand I, Olive D, Perez S, Pasqual N, Faure C, Ray-Coquard I, Puisieux A, Caux C, Blay JY, Ménétrier-Caux C. Regulatory T cells recruited through CCL22/CCR1 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Gross G, Gorochov G, Waks T, Eshhar Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transpl Proc. 1989;21:127–30.Google Scholar
  29. 29.
    Guo Y, Wu M, Chen H, Wang X, Liu G, Li G, et al. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science. 1994;263:518–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Ha T-Y. The role of MicroRNAs in regulatory T cells and in the immune response. Immune Netw. 2011;11(1):11–41.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hance KW, Zeytin HE, Greiner JW. Mouse models expressing human carcinoembryonic antigen (CEA) as a transgene: evaluation of CEA based cancer vaccines. Mutat Res, Fundam Mol Mech Mutagen. 2005;576:132–54.CrossRefGoogle Scholar
  32. 32.
    Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Haupt K, Roggendorf M, Mann K. The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med. 2002;227:227–37.CrossRefGoogle Scholar
  34. 34.
    Houot R, Schultz LM, Marabelle A, Kohrt H. T-cell-based Immunotherapy: adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res. 2015;10:1115–22.CrossRefGoogle Scholar
  35. 35.
    Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16:448–57.CrossRefPubMedGoogle Scholar
  36. 36.
    Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol. 2015;16:188–96.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, Maric I, Raffeld M, Nathan D-AN, Lanier BJ, Morgan RA, Rosenberg SA. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116:4099–102.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Korman AJ, et al. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Korngold R, Sprent J. Graft-versus-host disease in experimental allogeneic bone marrow transplantation. Proc Soc Exp Biol Med. 1991;197:12–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Kouidhi S, Noman MZ, Kieda C, Elgaaied AB, Chouaib S. Intrinsic and tumor microenvironment-induced metabolism adaptations of T cells and impact on their differentiation and function. Front Immunol. 2016;7:114.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kouidhi S, Zaeem MN, Kieda C, Elgaaied EB, Chouaib S. Intrinsic and tumor microenvironment-induced metabolism adaptations of T cells and impact on their differentiation and function. Front Immunol. 2016;7:114–21.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–65.CrossRefPubMedGoogle Scholar
  43. 43.
    Kueberuwa G, Kalaitsidou M, Cheadle E, Hawkins RE, Gilham DE. CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol Ther Oncol. 2018;8:41–51.CrossRefGoogle Scholar
  44. 44.
    Kurose K, Ohue Y, Wada H, Iida S, Ishida T, Kojima T, Doi T, Suzuki S, Isobe M, Funakoshi T, Kakimi K, Nishikawa H, Udono H, Oka M, Ueda R, Nakayama E. Phase I: a Study of FoxP3+ CD4 Treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. Clin Cancer Res. 2015;21(19):4327–36.CrossRefPubMedGoogle Scholar
  45. 45.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Li Q, et al. Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor-primed lymph node cells. J Immunol. 2005;175:1424–32.CrossRefPubMedGoogle Scholar
  48. 48.
    Lin W, et al. Human regulatory B cells combine phenotypic and genetic hallmarks with a distinct differentiation fate. J Immunol Baltim Md. 2014;193(5):2258–66.Google Scholar
  49. 49.
    Makita S, Tobinai K. Mogamulizumab for the treatment of T-cell lymphoma. Expert Opin Biol Ther. 2017;17(9):1145–53.CrossRefPubMedGoogle Scholar
  50. 50.
    Marelli-Berg FM, Fu H, Mauro C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity. Immunology. 2012;136(4):363–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Marsigliante S. Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens. Cancer Lett. 1999;139:33–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol. 2006;24:467–96.CrossRefPubMedGoogle Scholar
  53. 53.
    Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mauri C, Menon M. The expanding family of regulatory B cells. Int Immunol. 2015;27(10):479–86.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD. Agonist antibodies to TNFR molecules that costimulate T and NKcells. Clin Cancer Res. 2013;19(5):1044–53.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Milne K, Köbel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS ONE. 2009;4:41–62.CrossRefGoogle Scholar
  58. 58.
    Munn DH, Sharma MD, Johnson TS. Treg destabilization and reprogramming: implications for cancer immunotherapy. Cancer Res. 2018;78(18):5191–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185:4977–82.CrossRefPubMedGoogle Scholar
  61. 61.
    Norton SE, Ward-Hartstonge KA, Taylor ES, Kemp RA. Immune cell interplay in colorectal cancer prognosis. World J Gastrointest Oncol. 2015;7:221–32.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD. Combination immunotherapy: a road map. J Immunother Cancer. 2017;5:16.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD. Combinationimmunotherapy: a road map. J Immunother Cancer. 2017;5:16.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G. Interferon-gamma drives treg fragility to promote anti-tumorimmunity. Cell. 2017;169:1130–41.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Palmer DC, Chan CC, Gattinoni L, Wrzesinski C, Paulos CM, Hinrichs CS. Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc Natl Acad Sci USA. 2008;105:8061–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Panda AK, Bose S, Sarkar T, Chakraborty D, Chakraborty S, Sarkar I, Sa G. Cancer-immune therapy: restoration of immune response in cancer by immune cell modulation. Nucleus. 2017;60:93–109.CrossRefGoogle Scholar
  67. 67.
    Panda AK, Chakraborty D, Sarkar I, Khan T, Sa G. New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol. 2017;9:4528–31.CrossRefGoogle Scholar
  68. 68.
    Pardoll DM. Immunology beats cancer: a blueprint for successful translation. Nat Immunol. 2012;13:1129–32.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19:620–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:6155–242.CrossRefGoogle Scholar
  71. 71.
    Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, Chudakov DM, Rudensky AY. Regulatory T cells exhibit distinct features in human breast cancer. Immunity. 2016;45(5):1122–34.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Postow MA, et al. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Riemann D, Wenzel K, Schulz T, Hofmann S, Neef H, Lautenschläger C, Langner J. Phenotypic analysis of T lymphocytes isolated from non-small-cell lung cancer. Int Arch Allergy Immunol. 1997;114:38–45.CrossRefPubMedGoogle Scholar
  76. 76.
    Rizvi N, Gettinger S, Goldman J. Safety and efficacy of first-linenivolumab and ipilimumab in non-small cell lung cancer. In: 16th world conference on lung cancer, vol. 18; 2015. p. 6–9.Google Scholar
  77. 77.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.CrossRefPubMedGoogle Scholar
  79. 79.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21:233–40.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Rains N, Cannan R, Chen W, Stubbs R. Development of a dendritic cell (DC) based vaccine for patients with advanced colorectal cancer. Hepatogastroenterology. 2000;43:184–203.Google Scholar
  82. 82.
    Rodriguez-Pinto D. B cells as antigen presenting cells. Cell Immunol. 2005;238:67–75.CrossRefPubMedGoogle Scholar
  83. 83.
    Sampson JH, Vlahovic G, Sahebjam S, Omuro AMP, Baehring JM, Hafler DA. Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM). J Clin Oncol. 2015;33:3010.CrossRefGoogle Scholar
  84. 84.
    Schwartz M, Zhang Y, Rosenblatt JD. B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer. 2016;4:40–52.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sharma MD, Shinde R, McGaha T, Huang L, Holmgaard RB, Wolchok JD. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci Adv. 2015;1:150–84.CrossRefGoogle Scholar
  86. 86.
    Shen C. Latex bead-based artificial antigen-presenting cells induce tumor-specific CTL responses in the native T-cell repertoires and inhibit tumor growth. Immunol Lett. 2013;150:1–11.CrossRefPubMedGoogle Scholar
  87. 87.
    Sun S. Dual function of Drosophila cells as APCs for naive CD8+ T cells: implications for tumor immunotherapy. Immunity. 1996;4:555–64.CrossRefPubMedGoogle Scholar
  88. 88.
    Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci. 2018;1417:104–15.CrossRefPubMedGoogle Scholar
  89. 89.
    Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I, Ezoe S, Kanakura Y, Sato E, Fukumori Y, Karbach J, Jäger E, Sakaguchi S. Anti-CCR89 mAb selectively depletes effector-type FoxP3+ CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci USA. 2013;110(44):17945–50.CrossRefPubMedGoogle Scholar
  90. 90.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3:541–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Trefzer U, Herberth G, Wohlan K, Milling A, Thiemann M, Sherev T, et al. Vaccination with hybrids of tumor and dendritic cells induces tumor-specific T-cell and clinical responses in melanoma stage III and IV patients. Int J Cancer. 2004;110:730–40.CrossRefPubMedGoogle Scholar
  93. 93.
    Turtle CJ, Riddell SR. Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J. 2010;16:374–81.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ueno H, Schmitt N, Klechevsky E, Pedroza Gonzalez A, Matsui T, Zurawski G, Oh S, Fay J, Pascual V, Banchereau J, Palucka K. Harnessing human dendritic cell subsets for medicine. Immunol Rev. 2010;234(1):199–212.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Villarreal DO, L’Huillier A, Armington S, Mottershead C, Filippova EV, Coder BD, Petit RG, Princiotta MF. Targeting CCR95 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res. 2018;78(18):5340–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Wahl DR, Byersdorfer CA, Ferrara JL, Opipari AW Jr, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev. 2012;249:104–15.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ward E. A glycoengineered anti-CD19 antibody with potent antibody- dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol. 2011;155:426–37.CrossRefPubMedGoogle Scholar
  98. 98.
    Wang L, de Zoeten EF, Greene MI, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov. 2009;8:969–81.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ward ST, Li KK, Hepburn E, Weston CJ, Curbishley SM, Reynolds GM, et al. The effects of CCR99 inhibition on regulatory T-cell recruitment to colorectal cancer. Br J Cancer. 2015;112:319–28.CrossRefPubMedGoogle Scholar
  100. 100.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Wshen P, Fillatreau S. Antibody-independentfunctions of B cells: a focus on cytokines. Nat Rev Immunol. 2015;15:441–51.CrossRefGoogle Scholar
  102. 102.
    Xia J, Tanaka Y, Koido S, Liu C, Mukherjee P, Gendler SJ. Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol. 2003;170:1980–6.CrossRefPubMedGoogle Scholar
  103. 103.
    Yan J, Mamula MJ. B and T cell tolerance and autoimmunity in autoantibody transgenic mice. Int Immunol. 2002;14:963–71.CrossRefPubMedGoogle Scholar
  104. 104.
    Yoon JT, Longtine MS, Marquez-Nostra BV, Wahl RL. Evaluation of next-generation anti-CD20 antibodies labeled with zirconium 89 in human lymphoma xenografts. J Nucl Med. 2018;58:49–52.Google Scholar
  105. 105.
    Zeng H, Chi H. The interplay between regulatory T cells and metabolism in immune regulation. Oncoimmunology. 2013;2:11–86.CrossRefGoogle Scholar
  106. 106.
    Zhang Z, Zhu Y, Wang Z, et al. Yin-yang effect of tumor infiltrating B cells in breast cancer: from mechanism to immunotherapy. Cancer Lett. 2017;393:1–7.CrossRefPubMedGoogle Scholar
  107. 107.
    Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 targetgenes in developing and mature regulatory T cells. Nature. 2007;445:936–40.CrossRefPubMedGoogle Scholar
  108. 108.
    Zuang H, Benoist C, Mathis D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc Natl Acad Sci USA. 2010;107:4658–63.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2019

Authors and Affiliations

  • Dwaipayan Chakraborty
    • 1
  • Subhadip Pati
    • 1
  • Sayantan Bose
    • 1
  • Subhanki Dhar
    • 1
  • Saikat Dutta
    • 1
  • Gaurisankar Sa
    • 1
    Email author
  1. 1.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations