The Nucleus

, Volume 62, Issue 1, pp 3–14 | Cite as

Cytogenetics and genetic introgression from wild relatives in soybean

  • Ram J. SinghEmail author
Review Article


Cultivated soybean, wild soybean, and 23 perennial Glycine species contain 2n = 40 chromosomes. Accessions of G. hirticaulis and G. tabacina have diploid (2n = 40) and tetraploid (2n = 80) chromosome numbers. In contrast, G. tomentella includes accessions with four cytotypes (2n = 38, 40, 78, or 80). Meiosis of G. max and G. soja F1 is normal and gene exchange is easy. Occasionally, accessions of the two species differ by chromosome structural changes (reciprocal translocation/paracentric inversion). The segregating populations inherit undesirable traits such as vining, lodging susceptibility, lack of complete leaf abscission, seed shattering, and small black coated seeds because of genetic drag. The introgression of useful genes from 26 wild perennial Glycine species to soybean has been restricted because of crossability barriers and requires extensive hybridization, immature seed rescue, and cytogenetic manipulations. This review paper discusses cytogenetics, gene pools of the soybean and the production of fertile G. max plants using 78-chromosome G. tomentella (PI 441001) as a paternal and maternal parent in crosses with G. max cv. ‘Dwight’ (2n = 40). Thus, reporting breaking of the intersubgeneric crossability barriers for the first time.


Gene pool Glycine Glycine max Introgression Soybean Wide hybridization Wild species 



The author thanks Dr. David Walker and Dr. G. Govindjee for careful reading of the manuscript, Dr. Anurudh K Singh and an anonymous reviewer for editing the manuscript thoroughly.


  1. 1.
    Ahmad QN, Britten EJ, Byth DE. A quantitative method of karyotypic analysis applied to the soybean, Glycine max. Cytologia. 1983;48:879–92.CrossRefGoogle Scholar
  2. 2.
    Akpertey A, Singh RJ, Diers BW, Graef GL, Mian MAR, Shannon JG, Scaboo AM, Hudson ME, Thurber CS, Brown PJ, Nelson RL. Genetic introgression from Glycine tomentella to soybean to increase seed yield. Crop Sci. 2018;58:1277–91.CrossRefGoogle Scholar
  3. 3.
    Bauer S, Hymowitz T, Noel GR. Soybean cyst nematode resistance derived from Glycine tomentella in amphiploid (G. max × G. tomentella) hybrid lines. Nematropica. 2007;37:277–85.Google Scholar
  4. 4.
    Broich SL, Palmer RG. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica. 1980;29:23–32.CrossRefGoogle Scholar
  5. 5.
    Burdon JJ. Major gene for resistance to Phakopsora pachyrhizi in Glycine canescens, a wild relative of soybean. Theor Appl Genet. 1988;75:923–8.CrossRefGoogle Scholar
  6. 6.
    Carpenter JB, Fehr WR. Genetic variability for desirable agronomic traits in populations containing Glycine soja germplasm. Crop Sci. 1986;26:681–6.CrossRefGoogle Scholar
  7. 7.
    Carter TE Jr, Huie EB, Burton JW, Farmer FS, Gizlice Z. Registration of ‘Pearl’ soybean. Crop Sci. 1995;35:1713.CrossRefGoogle Scholar
  8. 8.
    Carter TE Jr, Nelson RL, Sneller CH, Cui Z. Genetic diversity in soybean. In: Boerma HR, Specht JE, editors. Soybeans: improvement, production, and uses, agronomy monograph, vol. 16. 3rd ed. Madison: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc; 2004. p. 303.Google Scholar
  9. 9.
    Chung G, Singh RJ. Broadening the genetic base of soybean: a multidisciplinary approach. Crit Rev Plant Sci. 2008;27:295–341.CrossRefGoogle Scholar
  10. 10.
    Clarindo WR, de Carvalho CR, Alves BMG. Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Syst Evol. 2007;265:101–7.CrossRefGoogle Scholar
  11. 11.
    Concibido V, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet. 2003;106:575–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Domagalski JM, Kollipara KP, Bates AHD, Brandon L, Friedman M, Hymowitz T. Nulls for the major soybean Bowman–Birk protease inhibitor in the genus Glycine. Crop Sci. 1992;32:1502–5.CrossRefGoogle Scholar
  13. 13.
    Ertle DS, Fehr WR. Agronomic performance of soybean genotypes from Glycine max × Glycine soja crosses. Crop Sci. 1985;25:589–92.CrossRefGoogle Scholar
  14. 14.
    Fehr WR, Cianzio SR, Welke GA. Registration of ‘SS202’ soybean. Crop Sci. 1990;30:1361.Google Scholar
  15. 15.
    Fehr WR. Registration of ‘SS201’ soybean. Crop Sci. 1990;30:1361.Google Scholar
  16. 16.
    Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G. A fluorescence in situ hybridization system for karyotyping soybean. Genetics. 2010;185:727–44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fukuda Y. Cyto-genetical studies on the wild and cultivated Manchurian soy beans (Glycine L.). Jpn J Bot. 1933;6:489–506.Google Scholar
  18. 18.
    Harlan JR, de Wet JMJ. Toward a rational classification of cultivated plants. Taxon. 1971;20:509–17.CrossRefGoogle Scholar
  19. 19.
    Hart SB, Glenn S, Kenworthy WW. Tolerance and the basis for selectivity to 2, 4-D in perennial Glycine species. Weed Sci. 1991;39:535–9.CrossRefGoogle Scholar
  20. 20.
    Hartman GL, Wang TC, Hymowitz T. Sources of resistance to soybean rust in perennial Glycine species. Plant Dis. 1992;76:396–9.CrossRefGoogle Scholar
  21. 21.
    Hartman GL, Gardner ME, Hymowitz T, Naidoo GC. Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause sclerotinia stem rot and sudden death syndrome. Crop Sci. 2000;40:545–9.CrossRefGoogle Scholar
  22. 22.
    Hermann FJ. A revision of the genus Glycine and its immediate allies. United States Department of Agriculture, Agricultural Research Service. Technical Bulletin No. 1268; 1962. p. 82.Google Scholar
  23. 23.
    Hill CB, Li Y, Hartman GL. Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphidiae). J Econ Entomol. 2004;97:1071–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Horlock CM, Teakle DS, Jones RM. Natural infection of the native pasture legumes, Glycine latifolia, by alfalfa mosaic virus in Queensland. Australas Plant Pathol. 1997;26:115–6.CrossRefGoogle Scholar
  25. 25.
    Hymowitz T, Singh RJ, Larkin RP. Long-distance dispersal: the case for the allopolyploid Glycine tabacina (Labill.) Benth. and G. tomentella Hayata in the West-Central Pacific. Micronesica. 1990;23:5–13.Google Scholar
  26. 26.
    Hyten DL, Song Q, Zhu V, Choi IK-Y, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB. Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A. 2006;103:16666–71.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Karpechenko GD. On the chromosomes of Phaseolinae. Bull Appl Bot Genet Plant Breed Leningr. 1925;14(2):143–8 (In Russian with English summary).Google Scholar
  28. 28.
    Kilen TC, He G. Identification and inheritance of metribuzin tolerance in wild soybean. Crop Sci. 1992;32:684–5.CrossRefGoogle Scholar
  29. 29.
    Kofsky J, Zhang H, Song B-H. The untapped genetic reservoir: the past, current, and future applications of the wild soybean (Glycine soja). Front Plant Sci. 2018;9:949. Scholar
  30. 30.
    Lackey JA. Neonotonia, a new generic name to include Glycine wightii (Arnott) Verdcourt (Legumonosae, Papilionoideae). Phytologia. 1977;37:209–12.Google Scholar
  31. 31.
    Ladizinsky G, Newell CA, Hymowitz T. Giemsa staining of soybean chromosomes. J Hered. 1979;70:415–6.CrossRefGoogle Scholar
  32. 32.
    Ladizinsky G, Newell CA, Hymowitz T. Wide crosses in soybeans: prospects and limitations. Euphytica. 1979;28:421–3.CrossRefGoogle Scholar
  33. 33.
    Lee JD, Shannon JG, Vuong TD, Nguyen HT. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J Hered. 2009;100:798–801.CrossRefPubMedGoogle Scholar
  34. 34.
    Li Z, Nelson RL. RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci. 2002;42:1737–1744.CrossRefGoogle Scholar
  35. 35.
    Lim SM, Hymowitz T. Reaction of perennial wild species of genus Glycine to Septoria glycines. Plant Dis. 1987;71:891–3.CrossRefGoogle Scholar
  36. 36.
    Luo Q, Yu B, Liu Y. Differential sensitivity to chloride to and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol. 2005;162:1003–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Lynch AJJ. The identification and distribution of Glycine latrobeana (Meissn.) Benth. in Tasmania. Proc R Soc Tasman. 1994;128:17–20.Google Scholar
  38. 38.
    Mignucci JS, Chamberlain DW. Interaction of Microsphaera diffusa with soybean and other legumes. Phytopathology. 1978;68:169–73.CrossRefGoogle Scholar
  39. 39.
    Nickell CD, Noel GR, Cary TR, Thomas DJ. Registration of ‘Dwight’ soybean. Crop Sci. 1998;38:1398.Google Scholar
  40. 40.
    Ohara M, Shimamoto Y. Importance of genetic characterization and conservation of plant genetic resources: the breeding system and genetic diversity of wild soybean (Glycine soja). Plant Species Biol. 2002;17:51–8.CrossRefGoogle Scholar
  41. 41.
    Ohmido N, Sato S, Tabata S, Fukui K. Chromosome maps of legumes. Chromosome Res. 2007;15:97–103.CrossRefPubMedGoogle Scholar
  42. 42.
    Pantalone VR, Kenworthy WJ, Slaughter LH, James BR. Chloride tolerance in soybean and perennial Glycine accessions. Euphytica. 1997;97:235–9.CrossRefGoogle Scholar
  43. 43.
    Pantalone VR, Rebetzke GJ, Burton JW, Wilson RF. Genetic regulation of linolenic acid concentration in wild soybean Glycine soja accessions. JAOCS. 1997;74:159–63.CrossRefGoogle Scholar
  44. 44.
    Passarge E. Emil Heitz and the concept of heterochromatin: longitudinal chromosome differentiation was recognized 50 years ago. Am J Hum Genet. 1979;31:106–15.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Pueppke SG. Nodulating associations among rhizobia and legumes of the genus Glycine subgenus Glycine. Plant Soil. 1988;109:189–93.CrossRefGoogle Scholar
  46. 46.
    Rani A, Kumar V, Gill BS, Shukla S, Rathi P, Singh RK. Mapping of duplicate dominant genes for Mungbean yellow mosaic India virus resistance in Glycine soja. Crop Sci. 2018;58:1566–74.CrossRefGoogle Scholar
  47. 47.
    Schoen DJ, Burdon JJ, Brown AHD. Resistance of Glycine tomentella to soybean leaf rust Phakopsora pachyrhizi in relation to ploidy level and geographical distribution. Theor Appl Genet. 1992;83:827–32.CrossRefPubMedGoogle Scholar
  48. 48.
    Sen NK, Vidyabhusan RV. Tetraploid soybeans. Euphytica. 1960;9:317–22.CrossRefGoogle Scholar
  49. 49.
    Singh RJ. Practical manual on plant cytogenetics. Boca Raton: CRC Press; 2018.Google Scholar
  50. 50.
    Singh RJ, Hymowitz T. The genomic relationships between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet. 1988;76:705–11.CrossRefPubMedGoogle Scholar
  51. 51.
    Singh RJ, Kim HH, Hymowitz T. Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet. 2001;103:212–8.CrossRefGoogle Scholar
  52. 52.
    Singh RJ, Nelson RL. Methodology for creating alloplasmic soybean lines by using Glycine tomentella as a maternal parent. Plant Breed. 2014;133:624–31.CrossRefGoogle Scholar
  53. 53.
    Singh RJ, Nelson RL. Intersubgeneric hybridization between Glycine max and G. tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet. 2015;128:1117–36.CrossRefPubMedGoogle Scholar
  54. 54.
    Tateishi Y, Ohashi H. Taxonomic studies on Glycine of Taiwan. J Jpn Bot. 1992;67:127–47.Google Scholar
  55. 55.
    Thseng FS, Tsai SJ, Abe J, Wu ST. Glycine formosana Hosokawa in Taiwan: pod morphology, allozyme, and DNA polymorphism. Bot Bull Acad Sin. 1999;40:251–7.Google Scholar
  56. 56.
    Tuyen DD, Lal SK, Xu DH. Identification of major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet. 2010;121:229–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Verdcourt B. A proposal concerning Glycine L. Taxon. 1966;15:34–6.CrossRefGoogle Scholar
  58. 58.
    Wen L, Yuan C, Herman TK, Hartman GL. Accessions of perennial Glycine species with resistance to multiple types of soybean cyst nematode (Heterodera glycines). Plant Dis. 2017;101:1201–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Winter SMJ, Shelp BJ, Anderson TR, Welacky TW, Rajcan I. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI 464925B. Theor Appl Genet. 2007;114:461–72.CrossRefPubMedGoogle Scholar
  60. 60.
    Xu SJ, Singh RJ, Kollipara KP, Hymowitz T. Primary trisomics in soybean: origin, identification, breeding behavior, and use in linkage mapping. Crop Sci. 2000;40:1543–1551.CrossRefGoogle Scholar
  61. 61.
    Yanagisawa T, Tano S, Fukui K, Harada K. Marker chromosomes commonly observed in the genus Glycine. Theor Appl Genet. 1991;81:606–12.CrossRefPubMedGoogle Scholar
  62. 62.
    Yu N, Diers BW. Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Euphytica. 2017;213–215:54. Scholar
  63. 63.
    Zheng C, Chen P, Hymowitz T, Wickizer S, Gergerich R. Evaluation of Glycine species for resistance to Bean pod mottle virus. Crop Prot. 2005;24:49–56.CrossRefGoogle Scholar
  64. 64.
    Zou JJ, Singh RJ, Lee J, Xu SJ, Cregan PB, Hymowitz T. Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet. 2003;107:745–50.CrossRefPubMedGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2019

Authors and Affiliations

  1. 1.USDA-Agricultural Research Service, Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, and Department of Crop SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations