Advertisement

The Nucleus

pp 1–5 | Cite as

Maize plants grown on low pH soil incur plural meiotic abnormalities during microsporogenesis

  • Esteban Burbano Erazo
  • Creuci Maria Caetano
Original Article
  • 12 Downloads

Abstract

Cell division is regulated by a series of intrinsic processes to realize normality. However, influence of external factors, such as soil acidity can cause abnormalities that affect meiosis or mitosis stability. For a better understanding of the impact of soil conditions on cell division, we evaluated meiotic behavior of four maize inbred lines (named IL1, IL2, IL3 and IL4) in an advanced stage of inbreeding, and two respective double hybrids (DH1 and DH2), grown on acidic soils of Brazilian savanna. We observed plural meiotic abnormalities, such as absence of first division, irregular spindles, chromosome shattering, chromosome stickiness, and defective cytokinesis, among others in the 31.6% of the PMCs. Such multiple cellular aberrations can affect the efficiency of the gametes and thereby reducing the productivity of crops.

Keywords

Meiotic dysgenesis Chromosome shattering Chromosome stickiness Cytokinesis Spindles 

References

  1. 1.
    Abiko M, Akibayashi K, Sakata T, Kimura M, Kihara M, Itoh K, Asamizu E, Sato S, Takahashi H, Higashitani A. High temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex Plant Reprod. 2005;18:91–100.CrossRefGoogle Scholar
  2. 2.
    Akšić MF, Cerović R, Ercişli S, Jensen M. Microsporogenesis and meiotic abnormalities in different ‘Oblačinska’sour cherry (Prunus cerasus L.) clones. Flora. 2016;219:25–34.CrossRefGoogle Scholar
  3. 3.
    Bajpai A, Singh AK. Meiotic behavior of Carica papaya L.: spontaneous chromosome instability and elimination in important cvs. in north Indian conditions. Cytologia. 2006;71:131–6.CrossRefGoogle Scholar
  4. 4.
    Beadle GW. Genes in maize for pollen sterility. Genetics. 1932;17:413–31.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Beadle GW. A gene in Zea mays for failure of cytokinesis during meiosis. Cytologia. 1932;3:142–155.CrossRefGoogle Scholar
  6. 6.
    Beadle GW. A gene for sticky chromosomes in Zea mays. Mol Genet Genomics. 1933;63:195–217.CrossRefGoogle Scholar
  7. 7.
    Caetano-Pereira CM, Taschetto OM, Defani-Scoarize MA, Pagliarini MS. Spontaneous chromosome fragmentation in maize microsporocytes. Cytologia. 1995;60:297–301.CrossRefGoogle Scholar
  8. 8.
    Caetano-Pereira CM, Pagliarini MS, Brasil EM. Cell fusion and chromatin degeneration in an inbred line of maize. Genet Mol Biol. 1999;22:69–72.CrossRefGoogle Scholar
  9. 9.
    Chan A, Cande WZ. Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J Cell Sci. 1998;111:3507–15.PubMedGoogle Scholar
  10. 10.
    Chaubal R, Zanella C, Trimnell MR, Fox TW, Albertsen MC, Bedinger P. Two male-sterile mutants of Zea mays (Poaceae) with an extra cell division in the anther wall. Am J Bot. 2000;87:1193–201.CrossRefGoogle Scholar
  11. 11.
    Delph LF, Johannsson MH, Stephenson AG. How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology. 1997;78:1632–39.CrossRefGoogle Scholar
  12. 12.
    Golubovskaya IN. Genetic control of meiosis. Int Rev Cytol. 1979;58:247–90.CrossRefGoogle Scholar
  13. 13.
    Golubovskaya IN. Meiosis in maize: mei genes and conception of genetic control of meiosis. Adv Genet. 1989;26:149–92.Google Scholar
  14. 14.
    Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ. The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics. 2002;162:1979–93.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Harper L, Golubovskaya I, Cande WZ. A bouquet of chromosomes. J Cell Sci. 2004;117:4025–32.CrossRefGoogle Scholar
  16. 16.
    Kaur H, Mubarik N, Kumari S, Gupta RC. Meiotic studies in some species of Pennisetum Pers. (Poaceae) from the Western Himalayas. Cytologia. 2014;79:247–59.CrossRefGoogle Scholar
  17. 17.
    Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol. 2004;55:459–93.CrossRefGoogle Scholar
  18. 18.
    Kumar G, Dwivedi S. Radiation induced hormesis and its cytological evaluation in sunnhemp Crotalaria juncea L. Chromosome Bot. 2016;11:31–6.CrossRefGoogle Scholar
  19. 19.
    Kumari K, Saggoo MIS. Meiotic abnormalities in some members of the Poaceae collected in District Kinnaur, Himachal Pradesh, India. Chromosome Bot. 2016;11:14–20.CrossRefGoogle Scholar
  20. 20.
    Lau TC, Stephenson AG. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sex Plant Reprod. 1994;7:215–20.CrossRefGoogle Scholar
  21. 21.
    Lavania UC, Basu S, Kushwaha JS, Lavania S. Seasonal temperature variations influence tapetum mitosis patterns associated with reproductive fitness. Genome. 2014;57:517–21.CrossRefGoogle Scholar
  22. 22.
    Leofanti G, Camadro EL. Pollen viability and meiotic abnormalities in brome grasses (Bromus L., Section Ceratochloa) from Argentina. Turk J Bot. 2017;41:127–33.CrossRefGoogle Scholar
  23. 23.
    Minissi S, Lombi E. Heavy metal content and mutagenic activity, evaluated by Vicia faba micronucleus test, of Tiber river sediments. Mutat Res. 1997;393:17–21.CrossRefGoogle Scholar
  24. 24.
    McClintock B. A method for making aceto-carmin smears permanent. Stain Technol. 1929.  https://doi.org/10.3109/10520292909115586.CrossRefGoogle Scholar
  25. 25.
    Mendes-Bonato AB, Pagliarini MS, Valle CBD. Abnormal spindle orientation during microsporogenesis in an interspecific Brachiaria (Gramineae) hybrid. Genet Mol Biol. 2006;29:122–5.CrossRefGoogle Scholar
  26. 26.
    Pessim C, Pagliarini MS, Silva N, Jank L. Chromosome stickiness impairs meiosis and influences reproductive success in Panicum maximum (Poaceae) hybrid plants. Genet Mol Res. 2015;14:4195–202.CrossRefGoogle Scholar
  27. 27.
    Shabir PA, Nawchoo IA, Wani AA. Floral phenology, secondary pollen presentation and pollination mechanism in Inula racemosa (Angiosperms: Asteraceae). J Threat Taxa. 2013;5:4498–503.CrossRefGoogle Scholar
  28. 28.
    Sobhakumari VP, Nair NV. The cytological mechanism of male sterility in intergeneric hybrids of Sorghum×Saccharum. Cytologia. 2014;79:79–83.CrossRefGoogle Scholar
  29. 29.
    Staiger CJ, Cande WZ. Microfilament distribution in maize meiotic mutants correlates with microtubule organization. Plant Cell. 1991.  https://doi.org/10.2307/3869192.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Utsunomiya KS, Bione NCP, Pagliarini MS. How many different kinds of meiotic abnormalities could be found in a unique endogamous maize plant. Cytologia. 2002;67:169–76.CrossRefGoogle Scholar
  31. 31.
    Von Uexküll HR, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171:1–15.CrossRefGoogle Scholar
  32. 32.
    Xia C, et al. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun. 2017;8:15407.  https://doi.org/10.1038/ncomms15407.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang J, Zhang B, Su H, Birchler JA, Han F. Molecular mechanisms of homologous chromosome pairing and segregation in plants. J Genet Genomics. 2014;41:117–23.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  1. 1.Research Group on Neotropical Plant Genetic Resources – GIRFINUniversidad Nacional de ColombiaPalmiraColombia

Personalised recommendations