Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of a Program for Analyzing Dielectric Relaxation and Its Application to Polymers: Nitrile Butadiene Rubber

  • 6 Accesses


To characterize the dielectric relaxation embedded in polymers, we developed a program algorithm that analyzes the relaxation processes from dielectric permittivity versus frequency data based on governing functions such as the Havriliak-Negami function including the conductivity contribution. With the help of the developed simulation program, we have identified three processes: an α process due to rotational and segmental motions of the C-C bond, an α’ process attributed to the fluctuation of the end-to-end dipole vector of the polymer chain, and the conduction contribution observed at high temperatures and low frequencies. The activation energy and glass transition temperature for the two main relaxations were independently determined from both the imaginary permittivity versus frequency and temperature by assuming Arrhenius dependence and the Vogel-Fulcher-Tamman law. The results obtained by the two methods for α and α’ relaxations were compared with each other and with that obtained by differential scanning calorimetry.

This is a preview of subscription content, log in to check access.


  1. (1)

    K. Mazloomi and C. Gomes, Renew. Sustain. Energy Rev., 16, 3024 (2012).

  2. (2)

    R. R. Barth, K. L. Simmons, and C. S. Marchi, Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis, Office of Scientific and Technical Information (OSTI), Oak Ridge, TN, 2013.

  3. (3)

    S. Pehlivan-Davis, Polymer Electrolyte Membrane (PEM) Fuel Cell Seals Durability, Ph D. Thesis, Loughborough University, Loughbor-ough, 2015.

  4. (4)

    N. C. Menon, A. M. Kruizenga, K. J. Alvine, C. S. Marchi, A. Nissen, and K. Brooks, in Proceedings of the ASME 2016 Pressure Vessels and Piping Conference PVP 2016, Pressure Vessels and Piping Division, Vancouver, British Columbia, 2016.

  5. (5)

    H. Fujiwara, H. Ono, and S. Nishimura, Int. J. Hydrog. Energy, 40, 2025 (2015).

  6. (6)

    S. Nishimura, International Symposium of Hydrogen Polymers Team, HYDROGENIUS, Kyushu University, 2017.

  7. (7)

    A. Züttel, A. Borgschulte, and L. Schlapbach, Hydrogen as a Future Energy Carrier, Wiley, Weinheim, 2008.

  8. (8)

    M. Ball and M. Weeda, Int. J. Hydrog. Energy, 40, 7903 (2015).

  9. (9)

    F. Kremer and A. Schonhals, Broadband Dielectric Spectroscopy, Springer Verlag, Berlin, 2003.

  10. (10)

    J. P. Runt and J. J. Fitzgerald, Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications, American Chemical Society, Washington, DC, 1997.

  11. (11)

    C. Ku and R. Liepins, Electrical Properties of Polymers, Hanser Publishers, Munich, 1987.

  12. (12)

    C. Fernández-Sánchez, C. J. McNeil, and K. Rawson, TrAC Trends Anal. Chem., 24, 37 (2005).

  13. (13)

    D. Dastan and A. Banpurkar, J. Mater. Sci. Mater. Electron., 28, 3851 (2016).

  14. (14)

    D. Dastan, S. W. Gosavi and N. B. Chaure, Macromol. Symp., 347, 81 (2015).

  15. (15)

    G. Williams, Trans. Faraday Soc., 62, 2091 (1966).

  16. (16)

    R. Brand, P. Lunkenheimer, U. Schneider, and A. Loidl, Phys. Rev. B, 62, 8878 (2000).

  17. (17)

    G. D. Smith and D. Bedrov, J. Polym. Sci. Part B Polym. Phys., 45, 627 (2007).

  18. (18)

    D. Dastan, Appl. Phys. A, 123, 699 (2017).

  19. (19)

    J. Pietrasik, M. Gaca, M. Zaborski, L. Okrasa, G. Boiteux, and O. Gain, Eur. Polym. J., 45, 3317 (2009).

  20. (20)

    S. A. Mansour, M. E. Al-Ghoury, E. Shalaan, M. H. I. El Eraki, and E. M. Abdel-Bary, J. Appl. Polym. Sci., 122, 1226 (2011).

  21. (21)

    X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Compos. Part A, 125, 105521 (2019).

  22. (22)

    Y. Feldman, A. Puzenko, and Y. Ryabov, in Fractals, Diffusion, and Relaxation in Disordered Complex Systems, S. A. Rice, W. T. Coffey, and Y. P. Kalmykov, Eds., John Wiley & Sons, New York, NY, 2006, pp 1–125.

  23. (23)

    A. Schönhals, Habilitation Thesis, Technical University Berlin, Berlin, 1996.

  24. (24)

    E. Schlosser and A. Schönhals, Colloid Polym. Sci., 267, 963 (1989).

  25. (25)

    K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941).

  26. (26)

    D. W. Davidson and R. H. Cole, J. Chem. Phys., 19, 1484 (1951).

  27. (27)

    S. Havriliak and S. Negami, J. Polym. Sci. Part C Polym. Symp., 14, 99 (1966).

  28. (28)

    T. P. Iglesias, G. Vilão, and J. C. R. Reis, J. Appl. Phys., 122, 074102 (2017).

  29. (29)

    P. Debye, Ber. Dt. Phys. Ges., 15, 777 (1913); reprinted 1954 in P. Debye (1913). The Collected Papers of Peter J. W. Debye, Inderscience, New York.

  30. (30)

    K. C. Kao, Dielectric Phenomena in Solids, Elsevier Science, London, UK, 2004.

  31. (31)

    A. Schönhals, F. Kremer, A. Hofmann, E. W. Fischer, and E. Schlosser, Phys. Rev. Lett., 70, 3459 (1993).

  32. (32)

    J. Langer, Phys. Today, 60, 8 (2007).

  33. (33)

    L. S. Garca-Coln, L. F. Del Castillo, and P. Goldstein, Phys. Rev. B, 40, 7040 (1989).

  34. (34)

    H. Vogel, Phys. Z., 22, 645 (1921).

  35. (35)

    G. S. Fulcher, J. Am. Ceram. Soc., 8, 339 (1925).

  36. (36)

    G. Tammann and W. Hesse, Z. Anorg. Allg. Chem., 156, 245 (1926).

  37. (37)

    J. Menegotto, P. Demont, A. Bernes, and C. Lacabanne, J. Polym. Sci. Part B Polym. Phys., 37, 3494 (1999).

  38. (38)

    S. Arrhenius, Z. Phys. Chem., 4, 96 (1889).

  39. (39)

    P. A. O’Connell and G. B. McKenna, J. Chem. Phys., 110, 11054 (1999).

  40. (40)

    N. Axelrod, E. Axelrod, A. Gutina, A. Puzenko, P. B. Ishai, and Y. Feld-man, Meas. Sci. Technol., 15, 755 (2004).

  41. (41)

    J. A. Nelder and R. Mead, Comput. J., 7, 308 (1965).

  42. (42)

    Millsian Inc., USA Cranbury, NJ. Millsian 2.1 beta software, https://www.millsian.com/download.shtml, Accessed 13 August 2019.

  43. (43)

    K.-Y. Kim, H.-K. Kang, C. Lee, and B.-H. Ryu, J. Korean Soc. Saf., 18, 57 (2003).

  44. (44)

    BioLogic Science Instruments, USA Knoxville. VSP-300 The Ultimate versatile multipotentiostat catalog, https://www.bio-logic.net/prod-ucts/multichannel-conductivity/vsp-300-6-channels-electrochemi-cal-workstation, Accessed 13 August 2019.

Download references

Author information

Correspondence to Ki Soo Chung.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-tional claims in published maps and institutional affiliations.

Acknowledgments: This research was supported by the Development of Reliability Measurement & Standard Technology for Hydrogen Fueling Station program of the Korea Research Institute of Standards and Science (KRISS-2019-GP2019-0012).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, J.K., Moon, Y.I., Chung, K.S. et al. Development of a Program for Analyzing Dielectric Relaxation and Its Application to Polymers: Nitrile Butadiene Rubber. Macromol. Res. (2020). https://doi.org/10.1007/s13233-020-8080-6

Download citation


  • nitrile butadiene rubber
  • dielectric relaxation
  • impedance spectroscopy
  • glass transition temperature