Advertisement

Floxacins: as Mediators in Enhancing the Corrosion Inhibition Efficiency of Natural Polymer Dextrin

  • 12 Accesses

Abstract

Three different floxacins (Ciprofloxacin, Levofloxacin, and Norfloxacin) were used to enhance the inhibition property of Dextrin (Dex) against the dissolution of mild steel in acid medium. Substantial increase in the inhibition property was observed against mild steel dissolution by the addition of floxacins than with pure Dex. Weights loss experiments proved the potential of Fluoroquinolones (FQs) in enhaning the corrosion inhibition property of Dex on metal by proving its best ability at lower concentrations. Adsorption of Dex and floxacins on metal surface was observed to accept with Langmuir adsorption isotherm. The results from EIS studies add to the enhancing property of floxacins on Dex. While the mixed type behavior of inhibitors were confirmed by polarization studies, images from SEM, EDS and AFM gathers strength to propose the formation of protective layer.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1

    S. A. Umoren, I. B. Obot, A. M. Kumar, and Z. M. Gasem, Carbohydr. Polym., 124, 280 (2015).

  2. 2

    E. A. David, A. Jonathan, P. O. Ameh, and C. Anya, Int. J. Ind. Chem., 4, 1 (2013).

  3. 3

    I. O. Arukalam, I. C. Madufor, O. Ogbobe, and E. E. Oguzie, Int. J. Eng. Tech. Res., 3, 163 (2015).

  4. 4

    M. M. Solomon, S. A. Umoren, I. I. Udosoro, and A. P. Udoh, Corros. Sci, 52, 1317 (2010).

  5. 5

    A. Peter, I. B. Obot, and S. K. Sharma, Int. J. Ind. Chem., 6, 153 (2015).

  6. 6

    A. O. Arukalam, Carbohydr. Polym., 112, 291 (2014).

  7. 7

    M. Mobin and M. Rizvi, Carbohydr. Polym., 136, 384 (2016).

  8. 8

    R. M. Gohil, J. App. Polym. Sci., 120, 2324 (2011).

  9. 9

    Y. Sangeetha, S. Meenakshi, and C. S. Sundaram, Adv. Mater Lett., 7, 587 (2016).

  10. 10

    M. M. Fares, A. K. Maayta, and A. Jamil, Corros. Sci, 65, 223 (2012).

  11. 11

    M. M. Fares, A. K. Maayta, A. Jamil, and Al-Mustafa, J. Adhes. Sci. Technol., 27, 2495 (2013).

  12. 12

    X. Pang, G. Wenjuan, L. Weihua, X. Jiandong, and H. Baorong, Sci. China Series B: Chem., 51, 928 (2008).

  13. 13

    H. K. Zaved, A. Aziz, H. Rafiul, and R. Al-Mamum, Anti-Corros. Methods Mater., 63, 308 (2016).

  14. 14

    T. K. Chaitra, K. N. Mohana, and H. C. Tandon, Int. J. Ind. Chem., 8, 1 (2017).

  15. 15

    A. S. Fouda, K. Shalabi, and A. E-Hossiany, J. Bio Tribo Corros., 2, 1 (2016).

  16. 16

    J. Y. Kim, J. H. Lee, D. Y. Jeong, D. K. Jang, T. R. Seo, and S. T. Lim, Carbohydr. Polym., 121, 140 (2015).

  17. 17

    T. Hiroki, K. Iwao, T. Noboru, S. Yuji, and Y. Mikio, J. Seibutsu Kogakkaishi, 84, 61 (2006).

  18. 18

    N. O. Eddy, S. R. Stoyanov, and E. E. Ebenso, Int. J. Electrochem. Sci., 5, 1127 (2010).

  19. 19

    S. Zakelj, K. Sturm, and A. Kristal, Int). Pharmacol, 313, 175 (2006).

  20. 20

    M. Berlanga, M. Teresa Montero, J. Hernandez-Borrell, and M. Vinas, Int. J. Antimicrob. Agents, 23, 627 (2004).

  21. 21

    J. P. Womg, H. Yang, K. L. Blasetti, G. Schnell, J. Conley, and L. N. Schofield, J. Control. Release, 92, 265 (2003).

  22. 22

    ASTM, G1-03, ASTM International, West Conshohocken, PA, USA, 2011.

  23. 23

    ASTM D2688-15, ASTM International, West Conshohocken, PA, USA, 2015.

  24. 24

    L. Yang, X. Qin, X. Jiang, M. Gong, D. Yin, Y. Zhang, and B. Zhao, Phys. Chem. Chem. Phys., 17, 17809 (2015).

  25. 25

    Z. M. Qiang and C. Adams, Water Res., 38, 2874 (2004).

  26. 26

    S. Babić, A. J. M. Horvat, D. M. Pavlović, and M. Kaštelan-Macan, Trends Anal. Chem., 26, 1043 (2007).

  27. 27

    E. Jimenez-Lozano, I. Marques, D. Barron, J. L. Beltran, and J. Barbosa, Anal. Chim. Acta, 464, 37 (2002).

  28. 28

    J. Sun, S. Sakai, Y. Tauchi, Y. Deguchi, J. Chen, R. Zhang, and K. Morimoto, Eur. J. Pharm. Biopharm., 54, 51 (2002).

  29. 29

    J. L. Vazquez, M. Berlanga, S. Merino, O. Domenech, M. Vinas, M. T. Montero, and J. Hernandez-Borrell, Photochem Photobiol, 73, 14 (2001).

  30. 30

    M. Lagrenee, B. Mernari, M. Bouanis, M. Traisnel, and F. Bentiss, Corros. Sci., 44, 573 (2002).

  31. 31

    S. A. Umoren and E. E. Ebenso, Mater. Chem. Phys., 106, 387 (2007).

  32. 32

    M. Bouklah, B. Hammouti, M. Lagrenee, and F. Bentiss, Corros. Sci, 48, 2407 (2006).

  33. 33

    F. M. Bayoumi and W. A. Ghane, Mater. Lett., 55, 3806 (2005).

  34. 34

    A. Yurt, A. Balban, S. U. Kandemir, G. Bereket, and B. Erk, Mater. Chem. Phys., 85, 420 (2004).

  35. 35

    M. Hosseini, S. F. L. Mertens, M. Ghorbani, and M. R. Arshadi, Mater. Chem. Phys., 78, 800 (2003).

  36. 36

    J. Cruz, R. Martinez, J. Genesca, and E. Gare, J. Electroanal. Chem., 566, 111 (2004).

  37. 37

    E. McCafferty and N. Hackerman, J. Electrochem. Soc, 119, 146 (1972).

  38. 38

    Z. Tao, S. Zhang, W. Li, and B. Hou, Ind. Eng. Chem. Res., 49, 2593 (2010).

  39. 39

    R. Solmaz, G. Kardas, M. Culha, B. Yazici, and M. Erbil, Electrochem. Acta, 53, 5941 (2008).

  40. 40

    J. N. Asegbeloyi, P. M. Ejikeme, L. O. Olasunkanmi, A. S. Adekunle, and E. E. Ebenso, Materials, 8, 2918 (2015).

  41. 41

    M. E. Mashuga, L. O. Olasunkanmi, A. S. Adekunle, S. Yesudass, M. M. Kabanda, and E. E. Ebenso, Materials, 8, 3607 (2015).

  42. 42

    M. Abdallah, B. H. Asghar, I. Zaafarany, and A. S. Fouda, Int. J. Electrochem. Sci., 51, 282 (2009).

  43. 43

    E. E. Foad, S. M. Abdel Wahaab, and M. Deyab, Mater. Chem. Phys., 89, 183 (2005).

  44. 44

    C. B. N. Unnisa, G. Nirmala Devi, V. Hemapriya, S. Chitra, I. M. Chung, S. H. Kim, and M. Prabakaran, Constr. Build. Mater., 165, 866 (2018).

  45. 45

    M. Prabakaran, S. H. Kim, N. Mugila, V. Hemapriya, K. Parameswari, S. Chitra, and I. M. Chung, J. Ind. Eng. Chem., 52, 235 (2017).

  46. 46

    R. Anitha, S. Chitra, V. Hemapriya, I. M. Chung, S. H. Kim, and M. Prabakaran, Constr. Build. Mater., 213, 246 (2019).

  47. 47

    V. Hemapriya, I. M. Chung, K. Parameswari, S. Chitra, S. H. Kim, and M. Prabakaran, Surf. Rev. Lett., 26, 1950066 (2019).

  48. 48

    V. Hemapriya, M. Prabakaran, K. Parameswari, S. Chitra, S. H. Kim, I. and M. Chung, Anti-Corros. Methods Mater., 64/3, 306 (2017).

  49. 49

    V. Hemapriya, M. Prabakaran, K. Parameswari, S. Chitra, S. H. Kim, and I. M. Chung, J. Ind. Eng. Chem., 40, 106 (2016).

  50. 50

    D. Mahalakshmi, C. B. N. Unnisa, V. Hemapriya, E. P. Subramaniam, S. M. Roopan, S. Chitra, I. M. Chung, S. H. Kim, and M. Prabakaran, Bulg. Chem. Commun., 51/1, 31 (2019).

Download references

Author information

Correspondence to Mayakrishnan Prabakaran.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This paper was supported by the KU Research Professor Program of Konkuk University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devi, G.N., Unnisa, C.B.N., Roopan, S.M. et al. Floxacins: as Mediators in Enhancing the Corrosion Inhibition Efficiency of Natural Polymer Dextrin. Macromol. Res. (2020) doi:10.1007/s13233-020-8071-7

Download citation

Key words

  • dextrin
  • fluoroquinolones
  • mild steel
  • corrosion
  • inhibition
  • SEM-EDS-AFM