Structural Effect of Ionic Liquid on Long-Term Stability in Poly(ethylene oxide)/Ag Ions/Ag Nanoparticles Composite for Olefin Separation

  • Hyunsik Jeon
  • Younghyun ChoEmail author
  • Sang Wook KangEmail author


In this study, the effect of ionic liquid cation on the long-term stability of membranes was investigated using 1-methyl-3-octylimidazolium tetrafluoroborate (MOIM+BF4-). The initial permeance of the poly(ethylene oxide) (PEO)/AgBF4/MOIM+BF4-membrane was 17 gas permeation unit (GPU), but after 100 hours of gas permeation experiment, it showed a low permeance of 5.3 GPU. Uv-vis spectra also showed that MOIM+BF4- could not prevent aggregation of silver nanoparticles. This indicated t h a t t h e M OI M+BF4- in the membrane could not stabilize the silver nanoparticles and thus the silver nanoparticles were aggregated and acted as a gas permeation barrier. MOIM+BF4- could not stabilize the surface of silver nanoparticles because of the long chain length of the cation. This indicated that the cation of the ionic liquid, especially carbon length, was main factor affecting the stability of separation performance with time for polymer/silver salt/ionic liquid complex membranes.


facilitated transport carrier membrane ionic liquid Ag 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Basic Science Research Program (2017R1D1A1B03032583) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning. This work was also supported by the Soon-chunhyang University Research Fund.


  1. (1).
    R. T. Yang and E. S. Kikkinides, AIChE. J., 41, 509 (1995).CrossRefGoogle Scholar
  2. (2).
    G. Chang, M. Huang, Y. Su, H. Xing, B. Su, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, and Z. Bao, Chem. Commun., 51, 2859 (2015).CrossRefGoogle Scholar
  3. (3).
    M. R. A. Hamid and H.-K. Jeong, Korean J. Chem. Eng., 35, 1577 (2018).CrossRefGoogle Scholar
  4. (4).
    J. Park, S.-P. Kang, and J.-W. Lee, Korean J. Chem. Eng., 33, 2186 (2016).CrossRefGoogle Scholar
  5. (5).
    T. C. Merkell, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, Science, 296, 519 (2002).CrossRefGoogle Scholar
  6. (6).
    Y. C. Hudiono, T. K. Carlisle, A. L. LaFrate, D. L. Gina, and R. D. Noble, J. Membr. Sci., 370, 141 (2001).CrossRefGoogle Scholar
  7. (7).
    M. H. Nematollahi, A. H. S. Dehaghani, V. Pirouzfar, and E. Akhondi, Macromol. Res., 24, 782 (2016).CrossRefGoogle Scholar
  8. (8).
    S. H. Kunjattu, V. Ashok, A. Bhaskar, K. Pandare, R. Banerjee, and U. K. Kharul, J. Membr. Sci., 549, 38 (2018).CrossRefGoogle Scholar
  9. (9).
    Y. S. Park, C. Ha, and S. W. Kang, RSC Adv., 7, 33568 (2017).CrossRefGoogle Scholar
  10. (10).
    I. S. Chae, S. W. Kang, and Y. S. Kang, RSC Adv., 4, 30156 (2014).CrossRefGoogle Scholar
  11. (11).
    J. H. Oh, Y. S. Kang, and S. W. Kang, Chem. Commun., 49, 10181 (2013).CrossRefGoogle Scholar
  12. (12).
    C. H. Park, J. H. Lee, J. P. Jung, and J. H. Kim, J. Membr. Sci., 533, 48 (2017).CrossRefGoogle Scholar
  13. (13).
    B. Jose, J. H. Ryu, B. G. Lee, H. Lee, Y. S. Kang, and H. S. Kim, Chem. Commun., 20, 2046 (2001).CrossRefGoogle Scholar
  14. (14).
    H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, Langmuir, 12, 909 (1996).CrossRefGoogle Scholar
  15. (15).
    I. Pastoriza-Santos and L. M. Liz-Marźan, Langmuir, 15, 948 (1999).CrossRefGoogle Scholar
  16. (16).
    S. H. Mun, S. W. Kang, J. C. Cho, S. K. Koh, and Y. S. Kang, J. Membr. Sci., 332, 1 (2009).CrossRefGoogle Scholar
  17. (17).
    S. U. Hong, J. H. Jin, J. Won, and Y. S. Kang, Adv. Mater., 12, 968 (2000).CrossRefGoogle Scholar
  18. (18).
    L. Dong, J. Xie, G. Fan, Y. Huang, J. Zhou, Q. Sun, L. Wang, Z. Guan, D. Jiang, and Y. Wang, Korean J. Chem. Eng., 34, 2861 (2017).CrossRefGoogle Scholar
  19. (19).
    D. Kumar and N. Talreja, Korean J. Chem. Eng., 36, 126 (2019).CrossRefGoogle Scholar
  20. (20).
    M. Christwardana, Y. Chung, D. C. Tannia, and Y. Kwon, Korean J. Chem. Eng., 35, 2421 (2018).CrossRefGoogle Scholar
  21. (21).
    R. Atchudan, B. G. Cha, N. Lone, J. Kim, and J. Joo, Korean J. Chem. Eng., 36, 157 (2019).CrossRefGoogle Scholar
  22. (22).
    B. Pejjai, V. R. M. Reddy, K. Seku, H. Cho, M. R. Pallavolu, T. T. T. Le, D. Jeong, T. R. R. Kotte, and C. Park, Korean J. Chem. Eng., 35, 2430 (2018).CrossRefGoogle Scholar
  23. (23).
    M. Shahid, Z. H. Farooqi, R. Begum, K. Naseem, M. Ajmal, and A. Irfan, Korean J. Chem. Eng., 35, 1099 (2018).CrossRefGoogle Scholar
  24. (24).
    Y. Sun and Y. Xia, Science, 298, 2176 (2002).CrossRefGoogle Scholar
  25. (25).
    I. S. Chae, S. W. Kang, J. Y. Park, Y. G. Lee, J. H. Lee, J. Won, and Y. S. Kang, Angew. Chem. Int. Ed., 50, 2982 (2011).CrossRefGoogle Scholar
  26. (26).
    S. W. Kang, K. Char, and Y. S. Kang, Chem. Mater., 20, 1308 (2008).CrossRefGoogle Scholar
  27. (27).
    H. Jeon and S. W. Kang, Polym. Compos., 40, 2745 (2019).CrossRefGoogle Scholar
  28. (28).
    S. W. Kang and Y. S. Kang, J. Colloid Interface Sci., 353, 83 (2011).CrossRefGoogle Scholar
  29. (29).
    S. W. Kang, D. H. Lee, J. H. Park, K. Char, J. H. Kim, J. Won, and Y. S. Kang, J. Membr. Sci., 322, 281 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of ChemistrySangmyung UniversitySeoulKorea
  2. 2.Department of Energy Systems EngineeringSoonchunhyang UniversityAsanKorea
  3. 3.Department of Chemistry and Energy EngineeringSangmyung UniversitySeoulKorea

Personalised recommendations