Advertisement

PPE/Nylon 66 Blends with High Mechanical Toughness and Flame Retardancy

  • Do Kyun Kim
  • Albert S. Lee
  • Bum Ki Baek
  • Kwang Ho Song
  • Soon Man Hong
  • Chong Min KooEmail author
Article
  • 16 Downloads

Abstract

Poly(2,6-dimethyl-1,4-phenylene ether) (PPE)/Nylon 66 blends have been considered as the potential heat resistant engineering plastics with high mechanical toughness and flame retardancy, suitable for high temperature applications. However, incompatibility between PPE and Nylon 66 and poor thermal stability of Nylon 66 degrade mechanical toughness and flame retardancy. In this work, for the first time, the PPE/Nylon 66 blends with high mechanical toughness and flame retardancy simultaneously have been prepared through newly synthesized compatibilizer of PPE grafted with fumaric acid (PPE-g-FA) and environmental-friendly non-halogen organic phosphinate flame retardant. The PPE/Nylon 66 blend achieved not only V0 grade flame retardancy with the help of improved fire resistance through the solid phase reaction of non-halogenic flame retardant, but also large impact strength larger than 10 kJ/m2 due to the strong compatibility of PPE-g-FA.

Keywords

flame retardancy poly(2,6-dimethyl-1,4-phenylene ether) (PPE) nylon 66 PPE-g-FA organic phosphinate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

13233_2020_8022_MOESM1_ESM.pdf (33 kb)
Supporting Information

References

  1. (1).
    W. S. Jou, K. N. Chen, D. Y. Chao, C. Y. Lin, and J. T. Yeh, Polym. Degrad. Stab., 74, 239 (2001).CrossRefGoogle Scholar
  2. (2).
    G. Latha, M. Natarajan, and S. C. Murugavel, High Perform. Polym., 28, 1218 (2016).CrossRefGoogle Scholar
  3. (3).
    L. Ye and B. Qu, Polym. Degrad. Stab., 93, 918 (2008).CrossRefGoogle Scholar
  4. (4).
    U. Braun, B. Schartel, M. Fichera, and C. Jager, Polym. Degrad. Stab., 92, 1528 (2007).CrossRefGoogle Scholar
  5. (5).
    H. Li, N. Ning, L. Zhang, Y. Wang, W. Liang, and M. Tian, Polym. Degrad. Stab., 105, 86 (2014).CrossRefGoogle Scholar
  6. (6).
    D. Wu, X. Wang, and R. Jin, J. Appl. Polym. Sci., 99, 3336 (2006).CrossRefGoogle Scholar
  7. (7).
    D. Wu, X. Wang, and R. Jin, Eur. Polym. J., 40, 1223 (2004).CrossRefGoogle Scholar
  8. (8).
    Y. C. Lai, J. Appl. Polym. Sci., 54, 1289 (1994).CrossRefGoogle Scholar
  9. (9).
    D. K. Kim, K. H. Song, C. M. Koo, S. M. Hong, and D. W. Chae, J. Fire Sci., 33, 339 (2015).CrossRefGoogle Scholar
  10. (10).
    J. J. Laverty, T. Ellis, J. O’Gara, and S. Kim, Polym. Eng. Sci., 36, 347 (1996).CrossRefGoogle Scholar
  11. (11).
    K. Yang, C. Xin, Y. Huang, L. Jiang, and Y. He, Int. J. Polym. Sci., 8, 1 (2016).Google Scholar
  12. (12).
    Y. Son and S. Lee, Polym. Bull., 56, 267 (2006).CrossRefGoogle Scholar
  13. (13).
    Y. T. Zhang, Y. Li, L. Li, and X. Qu, Key Eng. Mater., 501, 99 (2012).CrossRefGoogle Scholar
  14. (14).
    J. R. Campbell, S. Y. Hobbs, T. J. Shea, and V. H. Watkins, Polym. Eng. Sci., 30, 1056 (1990).CrossRefGoogle Scholar
  15. (15).
    Q. S. Bhatia, M. C. Burrell, and J. J. Chera, J. Appl. Polym. Sci., 46, 1915 (1992).CrossRefGoogle Scholar
  16. (16).
    H. S.-I. Chao, T. W. Hovatter, B. C. Johnson, and S. T. Rice, J. Polym. Sci. A: Polym. Chem., 27, 3371 (1989).CrossRefGoogle Scholar
  17. (17).
    D. Dastan, Appl. Phys. A, 123, 699 (2017).CrossRefGoogle Scholar
  18. (18).
    A. P. Gupta and V. R. Bharduwaj, Polym. Plast. Technol. Eng., 46, 743 (2007).CrossRefGoogle Scholar
  19. (19).
    B. K. Baek, Y. H. La, A. S. Lee, H. Han, S. H. Kim, S. M. Hong, and C. M. Koo, Polym. Degrad. Stab., 130, 103 (2016).CrossRefGoogle Scholar
  20. (20).
    B. K. Baek, J. W. Shin, J. Y. Jung, S. M. Hong, G. J. Nam, H. Han, and C. M. Koo, J. Appl. Polym. Sci., 131, 41442 (2014).Google Scholar
  21. (21).
    Y. J. Kwon, D. K. Kim, W. N. Kim, B. G. Cho, S. M. Hong, and C. M. Koo, J. Appl. Polym. Sci., 124, 2814 (2012).CrossRefGoogle Scholar
  22. (22).
    D. Dastan, S. L. Panahi, and N. B. Chaure, J. Mater. Sci., Mater. Electron., 27, 12291 (2016).CrossRefGoogle Scholar
  23. (23).
    K. H. Han, M. G. Jang, K. J. Jhun, C. Cho, and W. N Kim, Macromol. Res., 26, 254 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Do Kyun Kim
    • 1
    • 2
  • Albert S. Lee
    • 1
  • Bum Ki Baek
    • 1
  • Kwang Ho Song
    • 2
  • Soon Man Hong
    • 1
  • Chong Min Koo
    • 1
    • 3
    • 4
    Email author
  1. 1.Materials Architecturing Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  3. 3.Nanomaterials Science and EngineeringUniversity of Science and TechnologyDaejeonKorea
  4. 4.Nano-Bio-Information-Technology, KU-KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulKorea

Personalised recommendations