Advertisement

Eco-Friendly Nanocellulose Embedded Polymer Composite Foam for Flame Retardancy Improvement

  • Hansu Kim
  • Juhyuk Park
  • Kyung Suh Minn
  • Jae Ryoun YounEmail author
  • Young Seok SongEmail author
Article

Abstract

Delaying flame propagation in the event of a fire can increase the likelihood of preserving life and alleviating property damage. Here, a strategy for flame retardant polymer composite foam is proposed, which enables the improved performance, good formability, and reduced environmental burden while burning. The strategy is to incorporate sylilated nanocellulose into a polyurethane matrix containing a conventional flame retardant, Tris(2-chloroethyl) phosphate (TCEP). This strategy leads to the generation of char layer faster during combustion, resulting in a delayed flame propagation. The limiting oxygen index (LOI) of the samples increased by 28%, and the production rate of toxic gas emission was considerably reduced. The chemical, thermal, mechanical, and morphological analyses were carried out to understand the underlying physics.

Keywords

polyurethane foam nanocellulose composite flame retardancy silylated cellulose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. (1).
    S. Shaw, Rev. Environ. Health., 25, 261 (2010).PubMedCrossRefGoogle Scholar
  2. (2).
    K. Wu, Y. Hu, L. Song, H. Lu, and Z. Wang, Ind. Eng. Chem. Res., 48, 3150 (2009).CrossRefGoogle Scholar
  3. (3).
    X. Wang, L. Song, H. Yang, H. Lu, and Y. Hu, Ind. Eng. Chem. Res., 50, 5376 (2011).CrossRefGoogle Scholar
  4. (4).
    S. Li, C. Li, C. Li, M. Yan, Y. Wu, J. Cao, and S. He, Polym. Degrad. Stab., 98, 1940 (2013).CrossRefGoogle Scholar
  5. (5).
    S. Vecchiato, L. Skopek, S. Jankova, A. Pellis, W. Ipsmiller, A. Aldrian, B. Mueller, E. H. Acero, and G. M. Guebitz, ACS Sustain. Chem. Eng., 6, 2386 (2017).CrossRefGoogle Scholar
  6. (6).
    M. Jimenez, S. Duquesne, and S. Bourbigot, Ind. Eng. Chem. Res., 45, 4500 (2006).CrossRefGoogle Scholar
  7. (7).
    I. Van der Veen and J. de Boer, Chemosphere, 88, 1119 (2012).PubMedCrossRefGoogle Scholar
  8. (8).
    J. H. Cho, V. Vasagar, K. Shanmuganathan, A. R. Jones, S. Nazarenko, and C. Ellison, Chem. Mater., 27, 6784 (2015).CrossRefGoogle Scholar
  9. (9).
    T. R. Hull, A. Witkowski, and L. Hollingbery, Polym. Degrad. Stab., 96, 1462 (2011).CrossRefGoogle Scholar
  10. (10).
    L. Kong, H. Guan, and X. Wang, ACS Sustain. Chem. Eng., 6, 3349 (2018).CrossRefGoogle Scholar
  11. (11).
    L. Hollingbery and T. Hull, Thermochim. Acta, 509, 1 (2010).CrossRefGoogle Scholar
  12. (12).
    L. Qian, Y. Qiu, J. Wang, and W. Xi, Polymer, 68, 262 (2015).CrossRefGoogle Scholar
  13. (13).
    Y.-Q. Shi, T. Fu, Y.-J. Xu, D.-F. Li, X.-L. Wang, and Y.-Z. Wang, Chem. Eng. J., 354, 208 (2018).CrossRefGoogle Scholar
  14. (14).
    J. Zhao, Q. Zhao, C. Wang, B. Guo, C. B. Park, and G. Wang, Mater. Des., 131, 1 (2017).CrossRefGoogle Scholar
  15. (15).
    H. M. Kim, Z. M. Huang, J. S. Kim, J. R. Youn, and Y. S. Song, Eur. Polym. J., 106, 188 (2018).CrossRefGoogle Scholar
  16. (16).
    J. Park, H. M. Kim, J. R. Youn, and Y. S. Song, Adv. Mater. Technol., 1800410 (2018).Google Scholar
  17. (17).
    J. H. Park, K. S. Minn, H. R. Lee, S. H. Yang, C. B. Yu, S. Y. Pak, C. S. Oh, Y. S. Song, Y. J. Kang, and J. R. Youn, J. Sound Vib., 406, 224 (2017).CrossRefGoogle Scholar
  18. (18).
    J. Park, S. H. Yang, K. S. Minn, C. B. Yu, S. Y. Pak, Y. S. Song, and J. R. Youn, Mater. Des., 142, 212 (2018).CrossRefGoogle Scholar
  19. (19).
    J. H. Park, S. H. Yang, H. R. Lee, C. B. Yu, S. Y. Pak, C. S. Oh, Y. J. Kang, and J. R. Youn, J. Sound Vib, 397, 17 (2017).CrossRefGoogle Scholar
  20. (20).
    P. O. Darnerud, Environ. Int., 29, 841 (2003).PubMedCrossRefGoogle Scholar
  21. (21).
    C. Luo, J. Zuo, F. Wang, Y. Yuan, F. Lin, and J. Zhao, Macromol. Res., 26, 346 (2018).CrossRefGoogle Scholar
  22. (22).
    H. Ding, K. Huang, S. Li, L. Xu, J. Xia, and M. Li, Polym. Test., 62, 325 (2017).CrossRefGoogle Scholar
  23. (23).
    M. Ba, B. Liang, and C. Wang, Fibers Polym., 18, 907 (2017).CrossRefGoogle Scholar
  24. (24).
    J. Park, J. R. Youn, and Y. S. Song, ACS Appl. Mater. Interfaces, 9, 44724 (2017).PubMedCrossRefGoogle Scholar
  25. (25).
    T. Kovacs, V. Naish, B. O’Connor, C. Blaise, F. Gagné, L. Hall, V. Trudeau, and P. Martel, Nanotoxicology, 4, 255 (2010).PubMedCrossRefGoogle Scholar
  26. (26).
    D. M. Fox, J. Lee, M. Zammarano, D. Katsoulis, D. V. Eldred, L. M. Haverhals, P. C. Trulove, C. Hugh, and J. W. Gilman, Carbohydr. Polym., 88, 847 (2012).CrossRefGoogle Scholar
  27. (27).
    N. T. Cervin, L. A. Andersson, J. B. S. Ng, P. Olin, L. Bergström, and L. Wågberg, Biomacromolecules, 14, 503 (2013).PubMedCrossRefGoogle Scholar
  28. (28).
    B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, and L. Bergström, Nat. Nanotechnol., 10, 277 (2015).PubMedCrossRefGoogle Scholar
  29. (29).
    A. Liu and L. A. Berglund, Eur. Polym. J., 49, 940 (2013).CrossRefGoogle Scholar
  30. (30).
    Z. Zhang, P. Tingaut, D. Rentsch, T. Zimmermann, and G. Sèbe, ChemSusChem, 8, 2681 (2015).PubMedCrossRefGoogle Scholar
  31. (31).
    H. Kim, J. R. Youn, and Y. S. Song, Nanotechnology, 29, 455702 (2018).PubMedCrossRefGoogle Scholar
  32. (32).
    O. Köklükaya, F. Carosio, and L. Wågberg, ACS Appl. Mater. Interfaces, 9, 29082 (2017).PubMedCrossRefGoogle Scholar
  33. (33).
    Y. Cheng, G. He, A. Barras, Y. Coffinier, S. Lu, W. Xu, S. Szunerits, and R. Boukherroub, Chem. Eng. J., 331, 372 (2018).CrossRefGoogle Scholar
  34. (34).
    L. Jiao, H. Xiao, Q. Wang, and J. Sun, Polym. Degrad. Stab., 98, 2687 (2013).CrossRefGoogle Scholar
  35. (35).
    X. Chen, L. Huo, C. Jiao, and S. Li, J. Anal. Appl. Pyrolysis, 100, 186 (2013).CrossRefGoogle Scholar
  36. (36).
    J. Lubczak and E. Chmiel, Macromol. Res., 27, 543 (2019).CrossRefGoogle Scholar
  37. (37).
    M. S. Koo, K. Chung, and J. R. Youn, Polym. Eng. Sci., 41, 1177 (2001).CrossRefGoogle Scholar
  38. (38).
    C. Kim and J. R. Youn, Polym. Plast. Technol. Eng., 39, 163 (2000).CrossRefGoogle Scholar
  39. (39).
    M. Floros, L. Hojabri, E. Abraham, J. Jose, S. Thomas, L. Pothan, A. L. Leao, and S. Narine, Polym. Degrad. Stab., 97, 1970 (2012).CrossRefGoogle Scholar
  40. (40).
    S. T. McKenna and T. R. Hull, Fire Sci. Rev., 5, 3 (2016).CrossRefGoogle Scholar
  41. (41).
    X. Liu, K. A. Salmeia, D. Rentsch, J. Hao, and S. Gaan, J. Anal. Appl. Pyrolysis, 124, 219 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Fiber System EngineeringDankook UniversityGyeonggiKorea

Personalised recommendations