Advertisement

Macromolecular Research

, Volume 27, Issue 11, pp 1061–1070 | Cite as

Stimuli-Responsive Graphene Oxide-Polymer Nanocomposites

  • Qi Lu
  • Hyo Seon Jang
  • Wen Jiao Han
  • Jin Hyun LeeEmail author
  • Hyoung Jin ChoiEmail author
Review
  • 44 Downloads

Abstract

Graphene oxide (GO) attracts tremendous attention for application in high-performance stimuli-responsive “smart” materials because of its unique and excellent electrical, mechanical, thermal, and optical properties, high biocompatibility, and potential application in a variety of fields, including nanocomposite-based devices. Even at an extremely small loading, the chemical, physical, and mechanical properties of GO-polymer nanocomposites can be significantly changed due to its one-atom thickness and large surface area. Therefore, GO-based filler-containing polymer nanocomposites are sensitive to various external stimuli, such as electric and magnetic fields, pH, thermal or optical excitations, and stress. This article reviews the compositions, preparations, and characteristics of a variety of external stimuli-responsive nanocomposites containing GO and other graphene-based fillers. Particularly, the electrorheological and magnetorheological behaviors of smart fluids are described with well-known models and relationships. Finally, various applications of GO-polymer nanocomposites are briefly presented.

Keywords

graphene graphene oxide electrorheological fluid stimuli-responsive nanocomposite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. (1).
    J. C. Huang, Adv. Polym. Technol., 21, 299 (2002).CrossRefGoogle Scholar
  2. (2).
    M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).CrossRefGoogle Scholar
  3. (3).
    Y. Q. Rao and J. M. Pochan, Macromolecules, 40, 290 (2007).CrossRefGoogle Scholar
  4. (4).
    A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett., 8, 2012 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  5. (5).
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  6. (6).
    E. X. Peng, N. Todorova, and I. Yarovsky, ACS Omega, 3, 11497 (2018).PubMedPubMedCentralCrossRefGoogle Scholar
  7. (7).
    V. Reddy, K. K. C. S. Babu, S. R. Torati, Y. J. Eom, T. Q. Trung, N. E. Lee, and G. Kim, J. Ind. Eng. Chem., 63, 19 (2018).CrossRefGoogle Scholar
  8. (8).
    S. Y. He, N. D. Petkovich, K. W. Liu, Y. Q. Qian, C. W. Macosko, and A. Stein, Polymer, 110, 149 (2017).CrossRefGoogle Scholar
  9. (9).
    A. Buchsteiner, A. Lerf, and J. Pieper, J. Phys. Chem. B, 110, 22328 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  10. (10).
    S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006).CrossRefGoogle Scholar
  11. (11).
    D. R. Dreyer, S. J. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  12. (12).
    K. I. Winey and R. A. Vaia, MRS Bull., 32, 314 (2011).CrossRefGoogle Scholar
  13. (13).
    J. Wu, W. Wen, and P. Sheng, Soft Matter, 8, 11589 (2012).CrossRefGoogle Scholar
  14. (14).
    I. H. Tseng, Y. F. Liao, J. C. Chiang, and M. H. Tsai, Mater. Chem. Phys., 136, 247 (2012).CrossRefGoogle Scholar
  15. (15).
    S. Seiffert, J. Thiele, A. R. Abate, and D. A. Weitz, J. Am. Chem. Soc., 132, 6606 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  16. (16).
    W. C. Bauer, J. Kotar, P. Cicuta, R. T. Woodward, J. V. M. Weaverd, and W. T. S. Huck, Soft Matter, 7, 4214 (2011).CrossRefGoogle Scholar
  17. (17).
    J. A. Marins, B. G. Soares, A. A. Silva, M. G. Hurtado, and S. Livi, J. Colloid Interf. Sci., 405, 64 (2013).CrossRefGoogle Scholar
  18. (18).
    R. Tao and Q. Jiang, Phys. Rev. Lett., 73, 205 (1994).PubMedCrossRefPubMedCentralGoogle Scholar
  19. (19).
    Y. D. Kim and D. J. Klingenberg, J. Colloid Interf. Sci., 183, 568 (1996).CrossRefGoogle Scholar
  20. (20).
    H. J. Choi and M. S. Jhon, Soft Matter, 5, 1562 (2009).CrossRefGoogle Scholar
  21. (21).
    X. P. Zhao and J. B. Yin, Chem. Mater., 14, 2258 (2002).CrossRefGoogle Scholar
  22. (22).
    Y. D. Kim and J. C. Jung, Macromol. Res., 18, 1203 (2010).CrossRefGoogle Scholar
  23. (23).
    J. K. Hwang, K. Shin, H. S. Lim, J. C. Cho, J. W. Kim, and K. D. Suh, Macromol. Res., 20, 391 (2012).CrossRefGoogle Scholar
  24. (24).
    M. Y. Zhang, X. Q. Gong, and W. J. Wen, Electrophoresis, 30, 3116 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  25. (25).
    S. B. Choi, Y. M. Han, H. J. Song, J. W. Sohn, and H. J. Choi, J. Intell. Mater. Syst. Struct., 18, 1169 (2007).CrossRefGoogle Scholar
  26. (26).
    J. Nikitczuk, B. Weinberg, and C. Mavroidis, Smart Mater. Struct., 16, 418 (2007).CrossRefGoogle Scholar
  27. (27).
    A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).PubMedPubMedCentralCrossRefGoogle Scholar
  28. (28).
    C. Soldano, A. Mahmood, and E. Dujardin, Carbon, 48, 2127 (2010).CrossRefGoogle Scholar
  29. (29).
    H. Q. Chen, M. B. Muller, K. J. Gilmore, and G. G. Wallace, D. Li, Adv. Mater., 20, 3557 (2008).CrossRefGoogle Scholar
  30. (30).
    S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  31. (31).
    H. B. Zhang, W. G. Zheng, Q. Yan, Y. Yong, J. W. Wang, Z. H. Lu, G. Y. Ji, and Z. Z. Yu, Polymer, 51, 1191 (2010).CrossRefGoogle Scholar
  32. (32).
    A. J. Marsden, D. G. Papageorgiou, C. Vallés, A. Liscio, V. Palermo, M. A. Bissett, R. J. Young, and I. A. Kinloch, 2D Mater., 5, 032003 (2018).CrossRefGoogle Scholar
  33. (33).
    K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Sci. Technol., 67, 2045 (2007).CrossRefGoogle Scholar
  34. (34).
    H. Kim, Y. Miura, and C. W. Macosko, Chem. Mater., 22, 3441 (2010).CrossRefGoogle Scholar
  35. (35).
    A. M. Alekseev, A. E. Efimov, and G. de With, Mater. Sci. Eng., 443, 012002 (2018).Google Scholar
  36. (36).
    X. Wu, S. Qi, J. He, and G. Duan, J. Mater. Sci., 45, 483 (2009).CrossRefGoogle Scholar
  37. (37).
    M. Yoonessi and J. R. Gaier, ACS Nano, 4, 7211 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  38. (38).
    G. H. Chen, W. G. Weng, D. J. Wu, and C. L. Wu, Eur. Polym. J., 39, 2329 (2003).CrossRefGoogle Scholar
  39. (39).
    H. J. Salavagione, G. Martínez, and M. A. Gómez, J. Mater. Chem., 19, 5027 (2009).CrossRefGoogle Scholar
  40. (40).
    S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, Carbon, 49, 198 (2011).CrossRefGoogle Scholar
  41. (41).
    N. Du, C. Y. Zhao, Q. Chen, G. Wu, and R. Lu, Mater. Chem. Phys., 120, 167 (2010).CrossRefGoogle Scholar
  42. (42).
    D. Yan, H. B. Zhang, Y. Jia, J. Hu, X. Y. Qi, Z. Zhang, and Z. Z. Yu, ACS Appl. Mater. Interf., 4, 4740 (2012).CrossRefGoogle Scholar
  43. (43).
    W. L. Zhang, Y. D. Liu, and H. J. Choi, Carbon., 50, 290 (2012).CrossRefGoogle Scholar
  44. (44).
    M. S. Cho, H. J. Choi, and W. S. Ahn, Langmuir, 20, 202 (2004).PubMedCrossRefPubMedCentralGoogle Scholar
  45. (45).
    Y. L. Cao, H. J. Choi, W. L. Zhang, B. X. Wang, C. C. Hao, and J. Q. Liu., Compos. Sci. Technol., 122, 36 (2016).CrossRefGoogle Scholar
  46. (46).
    B. Sim, W. L. Zhang, and H. J. Choi, Mater. Chem. Phys., 153, 443 (2015).CrossRefGoogle Scholar
  47. (47).
    M. Y. Tang, X. R. Wang, F. Wu, Y. Liu, S. Zhang, X. B. Pang, X. X. Li, and H. X. Qiu, Carbon, 71, 238 (2014).CrossRefGoogle Scholar
  48. (48).
    J. M. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. X. Huang, J. Am. Chem. Soc., 132, 8180 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  49. (49).
    S. D. Kim, W. L. Zhang, and H. J. Choi, J. Mater. Chem. C, 2, 7541 (2014).CrossRefGoogle Scholar
  50. (50).
    T. H. Min and H. J. Choi, Macromol. Res., 25, 565 (2017).CrossRefGoogle Scholar
  51. (51).
    C. J. Lee and H. J. Choi, Colloids Surf. A: Physicochem. Eng. Asp., 550, 56 (2018).CrossRefGoogle Scholar
  52. (52).
    W. L. Zhang, H. J. Choi, and Y. S. Seo, Macromol. Chem. Phys., 214, 1415 (2013).CrossRefGoogle Scholar
  53. (53).
    K. Zhang, W. L. Zhang, and H. J. Choi, Colloid Polym. Sci., 291, 955 (2012).CrossRefGoogle Scholar
  54. (54).
    P. P. Chen, Q. Q. Cheng, L. M. Wang, Y. D. Liu, and H. J. Choi, J. Ind. Eng. Chem., 69, 106 (2019).CrossRefGoogle Scholar
  55. (55).
    M. Yalcintas and H. Dai, Smart Mater. Struct., 8, 560 (1999).CrossRefGoogle Scholar
  56. (56).
    K. Zhang, H. T. Li, Y. Z. Dong, H. L. Zhang, W. Zhao, S. Q. Zhao, and H. J. Choi, Polymer, 168, 29 (2019).CrossRefGoogle Scholar
  57. (57).
    M. S. Cho, H. J. Choi, and M. S. Jhon, Polymer, 46, 11484 (2005).CrossRefGoogle Scholar
  58. (58).
    T. H. Min, C. J. Lee, and H. J. Choi, Polym. Test., 66, 195 (2018).CrossRefGoogle Scholar
  59. (59).
    W. L. Zhang, H. J. Choi, and Y. Seo, Macromol. Chem. Phys., 214, 1415 (2013).CrossRefGoogle Scholar
  60. (60).
    K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941).CrossRefGoogle Scholar
  61. (61).
    T. Tang, F. Liu, Y. Liu, X. Li, Q. Xu, Q. Feng, N. Tang, and Y. Du, Appl. Phys. Lett., 104, 123104 (2014).CrossRefGoogle Scholar
  62. (62).
    G. Ning, C. Xu, L. Hao, O. Kazakova, Z. Fun, H. Wang, K. Wang, J. Gao, W. Qian, and F. Wei, Carbon, 51, 390 (2013).CrossRefGoogle Scholar
  63. (63).
    S. Qin, X. Guo, Y. Cao, Z. Ni, and Q. Xu, Carbon, 78, 559 (2014).CrossRefGoogle Scholar
  64. (64).
    H. P. Cong, J. J. He, Y. Lu, and S. H. Yu, Small, 6, 169 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  65. (65).
    X. Y. Yang, X. Y. Zhang, Y. F Ma, Y. Huang, Y. S. Wang, and Y. S. Chen, J. Mater. Chem, 19, 2710 (2009).CrossRefGoogle Scholar
  66. (66).
    W. L. Zhang, Y. Tian, Y. D. Liu, Z. Q. Song, J. Q. Liu, and H. J. Choi, RSC Adv., 6, 77925 (2016).CrossRefGoogle Scholar
  67. (67).
    C. H. Hong, M. W. Kim, W. L. Zhang, I. J. Moon, and H. J. Choi, J. Colloid Interf. Sci., 481, 194 (2016).CrossRefGoogle Scholar
  68. (68).
    S. H. Lee, J. H. Jung, and I. K. Oh, Small, 10, 3880 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  69. (69).
    J. Zhu, C. M. Andres, J. D. Xu, A. Ramamoorthy, T. Tsotsis, and N. A. Kotov, ACS Nano, 6, 8357 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  70. (70).
    H. Yang, K. Paek, and B. J. Kim, Nanoscale, 5, 5720 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  71. (71).
    J. H. Lee, H. S. Yang, C. H. Park, H. H Cho, H. S. Yun, and B. J. Kim, Chem. Mater., 28, 3446 (2016).CrossRefGoogle Scholar
  72. (72).
    L. Qiu, D. Y. Liu, Y. F. Wang, C. Cheng, K. Zhou, J. Ding, V. T. Truong, and D. Li, Adv. Mater., 26, 3333 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  73. (73).
    D. M. Wang, H. C. Duan, J. H. Lu, and C. L. Lu, J. Mater. Chem. A, 5, 5088 (2017).CrossRefGoogle Scholar
  74. (74).
    S. Ganguli, A. K. Roy, and D. P. Anderson, Carbon, 46, 806 (2008).CrossRefGoogle Scholar
  75. (75).
    A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Phys. Chem. C, 111, 7565 (2007).CrossRefGoogle Scholar
  76. (76).
    A. Yu, P. Ramesh, X. B. Sun, E. Bekyarova, M. E. Itkis, and R. C. Haddon, Adv. Mater., 20, 4740 (2008).CrossRefGoogle Scholar
  77. (77).
    W. Lin, R. Zhang, and C. P. Wong, J. Electron. Mater., 39, 268 (2010).CrossRefGoogle Scholar
  78. (78).
    L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. S. Lu, P. Y. Zhang, Y. Lin, R. Fee, J. W. Connell, and Y. P. Sun, Adv. Mater., 21, 2088 (2009).CrossRefGoogle Scholar
  79. (79).
    M. Fang, K. G. Wang, H. B. Lu, Y. L. Yanga, and S. Nutt, J. Mater. Chem., 19, 7098 (2009).CrossRefGoogle Scholar
  80. (80).
    M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, and Y. J. Chabal, Nat. Mater., 9, 840 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  81. (81).
    J. J. Liang, Y. F. Xu, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, F. F. Li, T. Y. Guo, and Y. S. Chen, J. Phys. Chem. C, 113, 9921 (2009).CrossRefGoogle Scholar
  82. (82).
    J. Loomis, B. King, and B. Panchapakesan, Appl. Phys. Lett., 100, 073108 (2012).CrossRefGoogle Scholar
  83. (83).
    J. Loomis, X. M. Fan, F. Khosravi, P. Xu, M. Fletcher, R. W. Cohn, and B. Panchapakesan, Sci. Rep., 3, 1900 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  84. (84).
    M. N. Muralidharan and S. Ansari, Adv. Mater. Lett., 4, 927 (2013).CrossRefGoogle Scholar
  85. (85).
    Z. X. Cheng, T. J. Wang, X. Li, Y. H. Zhang, and H. F. Yu, ACS Appl. Mater. Interf., 7, 27494 (2015).CrossRefGoogle Scholar
  86. (86).
    L. Yu and H. Yu, ACS Appl. Mater. Interf., 7, 3834 (2015).CrossRefGoogle Scholar
  87. (87).
    R. Weissleder, Nat. Biotechnol., 19, 316 (2001).PubMedCrossRefPubMedCentralGoogle Scholar
  88. (88).
    H. Kim, D. Lee, J. Kim, T. I. Kim, and W. J. Kim, ACS Nano, 7, 6735 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  89. (89).
    A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, Solid State Commun., 147, 336 (2008).CrossRefGoogle Scholar
  90. (90).
    S. M. Choi, S. H. Jhi, and Y. W. Son, Nano Lett., 10, 3486 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  91. (91).
    G. Cocco, E. Cadelano, and L. Colombo, Phys. Rev. B, 81, 241412 (2010).CrossRefGoogle Scholar
  92. (92).
    Y. Lu and J. Guo, Nano Res., 3, 189 (2009).CrossRefGoogle Scholar
  93. (93).
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature, 457, 706 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  94. (94).
    Y. B. Lee, S. K. Bae, H. Jang, S. J. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, Nano Lett., 10, 490 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  95. (95).
    C. Gómez-Navarro, M. Burghard, and K. Kern, Nano Lett., 8, 2045 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  96. (96).
    T. D. Fornes and D. R. Paul, Polymer, 44, 4993 (2003).CrossRefGoogle Scholar
  97. (97).
    H. Zhong and J. R. Lukes, Phys. Rev. B, 74, 125403 (2006).CrossRefGoogle Scholar
  98. (98).
    G. L. Pollack, Rev. Mod. Phys., 41, 48 (1969).CrossRefGoogle Scholar
  99. (99).
    N. Shenogina, R. Godawat, P. Keblinski, and S. Garde, Phys. Rev. Lett., 102, 156101 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  100. (100).
    S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl. Phys. Lett., 85, 2229 (2004).CrossRefGoogle Scholar
  101. (101).
    G. H. Chen, D. J. Wu, W. G. Weng, and W. L. Yan, J. Appl. Polym. Sci., 82, 2506 (2001).CrossRefGoogle Scholar
  102. (102).
    G. H. Chen, D. J. Wu, W. G. Weng, and W. L. Yan, Polym. Eng. Sci., 41, 2148 (2001).CrossRefGoogle Scholar
  103. (103).
    X. S. Du, M. Xiao, Y. Z. Meng, and A. S. Hay, Polymer, 45, 6713 (2004).CrossRefGoogle Scholar
  104. (104).
    Y. She, G. Chen, and D. Wu, Polym. Int., 56, 679 (2007).CrossRefGoogle Scholar
  105. (105).
    W.-P. Wang and C. Y. Pan, Polymer, 45, 3987 (2004).CrossRefGoogle Scholar
  106. (106).
    G. Kocak, C. Tuncer, and V. Bütün, Polym. Chem., 8, 144 (2017).CrossRefGoogle Scholar
  107. (107).
    C. J. Shih, S. C. Lin, R. Sharma, M. S. Strano, and D. Blankschtein, Langmuir, 28, 235 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  108. (108).
    J. M. Bak and H. I. Lee, Polymer, 53, 4955 (2012).CrossRefGoogle Scholar
  109. (109).
    M. F., J. Long, W. F. Zhao, L. W. Wang, and G. H. Chen, Langmuir, 26, 16771 (2010).CrossRefGoogle Scholar
  110. (110).
    T. Kavitha, S. I. Haider Abdi, and S. Y. Park, Phys. Chem. Phys., 15, 5176 (2013).CrossRefGoogle Scholar
  111. (111).
    C. L. Wang, B. Li, W. F. Niu, S. S. Hong, B. Saif, S. B. Wang, C. Dong, and S. M. Shuang, RSC Adv., 5, 89299 (2015).CrossRefGoogle Scholar
  112. (112).
    S. K. Bae, H. K. Kim, Y. B. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol., 5, 574 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  113. (113).
    H. Kim and C. W. Macosko, Polymer, 50, 3797 (2009).CrossRefGoogle Scholar
  114. (114).
    L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, Adv. Mater., 22, 2694 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  115. (115).
    G. L. Li, G. Liu, M. Li, D. Wan, K. G. Neoh, and E. T. Kang, J. Phys. Chem. C, 114, 12742 (2010).CrossRefGoogle Scholar
  116. (116).
    C. P. Tien and H. Teng, J. Power Sources, 195, 2414 (2010).CrossRefGoogle Scholar
  117. (117).
    Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, ACS Nano, 4, 1963 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  118. (118).
    D. W. Wang, F. Li, J. P. Zhao, W. C. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. G. G. Q. Lu, and H. M. Cheng, ACS Nano, 3, 1745 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  119. (119).
    G. Eda and M. Chhowalla, Nano Lett., 9, 814 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  120. (120).
    T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrar, Adv. Mater., 21, 3874 (2009).CrossRefGoogle Scholar
  121. (121).
    W. Zhang, B. S. Xu, A. Tanaka, and Y. Koga, Carbon, 47, 922 (2009).CrossRefGoogle Scholar
  122. (122).
    W. L. Zhang, Y. D. Liu, H. J. Choi, and Y. S. Seo, RSC Adv., 3, 11723 (2013).CrossRefGoogle Scholar
  123. (123).
    X. Xiao, T. Xie, and Y. T. Cheng, J. Mater. Chem., 20, 3508 (2010).CrossRefGoogle Scholar
  124. (124).
    J. T. Kim, H. J. Jeong, H. C. Park, H. M. Jeong, S. Y. Bae, and B. K. Kim, React. Fucnt. Polym., 88, 1 (2015).CrossRefGoogle Scholar
  125. (125).
    S. Ansari and E. P. Giannelis, J. Polym. Sci. B: Polym. Phys., 47, 888 (2009).CrossRefGoogle Scholar
  126. (126).
    B. Pukanszky and E. Fekete, Mineral Fillers in Theroplastics, 139, 109 (1999).CrossRefGoogle Scholar
  127. (127).
    D. D. Kulkarni, I. J. Choi, S. S. Singamaneni, and V. V. Tsukruk, ACS Nano, 4, 4667 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  128. (128).
    K. A. Williams, A. J. Boydston, and C. W. Bielawski, J. R. Soc. Interf., 4, 359 (2007).CrossRefGoogle Scholar
  129. (129).
    B. Z. Jang and A. J. Zhamu, J. Mater. Sci., 43, 5092 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonKorea
  2. 2.Polymer Research CenterInha UniversityIncheonKorea

Personalised recommendations